scholarly journals Identification of Potential miRNA-mRNA Regulatory Network Contributing to Parkinson’s Disease

Author(s):  
Xi Yin ◽  
Miao Wang ◽  
Wei Wang ◽  
Tong Chen ◽  
Ge Song ◽  
...  

Abstract Parkinson’s disease (PD) is a common neurodegenerative disease and the mechanism underlying PD pathogenesis is incompletely understood. Increasing evidence indicates that microRNA (miRNA) plays critical regulatory role in the pathogenesis of PD. This study aimed to determine the miRNA-mRNA regulatory network for PD. The differentially expressed miRNAs (DEmis) and genes (DEGs) between PD patients and healthy donors were screened from miRNA dataset GSE16658 and mRNA dataset GSE100054 downloaded from the Gene Expression Omnibus (GEO) database. Target genes of the DEmis were selected when predicted by 3 or 4 online databases and overlapped with DEGs from GSE100054. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted by Database for Annotation, Visualization and Integrated Discovery (DAVID) and Metascape analytic tool. The correlation between the screened genes and PD was evaluated by the online tool Comparative Toxicogenomics Database (CTD). The protein-protein interactions (PPI) network was built by STRING platform. Finally, we testify the expression of members of the miRNA-mRNA regulatory network in the blood samples collected from PD patients and healthy donors by using qRT-PCR. 1505 upregulated and 1302 downregulated DEGs, 77 upregulated DEmis and 112 downregulated DEmis were preliminarily screened from GEO database. Through further functional enrichment analysis, 10 PD-related hub genes were selected, including RAC1, IRS2, LEPR, PPARGC1A, CAMKK2, RAB10, RAB13, RAB27B, RAB11A and JAK2, which were mainly involved in Rab protein signaling transduction, AMPK signaling pathway and signaling by Leptin. The miRNA-mRNA regulatory network was constructed with 10 hub genes and their interacting miRNAs overlapped with DEmis, including miR-30e-5p, miR-142-3p, miR-101-3p, miR-32-3p, miR-508-5p, miR-642a-5p, miR-19a-3p and miR-21-5p. Analysis on clinical samples verified significant upregulation of LEPR and downregulation of miR-101-3p in PD patients compared with healthy donors. In the study, the potential miRNA-mRNA regulatory network was constructed in PD, which may provide novel insight into pathogenesis and treatment of PD.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei Quan ◽  
Jia Li ◽  
Xiya Jin ◽  
Li Liu ◽  
Qinghui Zhang ◽  
...  

Purpose. This study aimed to explore new core genes related to the occurrence of Parkinson’s disease (PD) and core genes that can lead to the progression of PD. Methods. The expression profile data of GSE42966, which contained six substantia nigra tissues isolated from normal individuals and nine substantia nigra tissues isolated from patients with PD, were obtained from Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, followed by functional enrichment analysis and protein-protein interaction (PPI) network construction. We then identified 10 hub genes and analyzed their expression in different Braak stages. Results. A total of 773 DEGs were identified that were significantly enriched in metabolic pathways. Ten hub genes were identified through the PPI network, namely, GNG3, MAPK1, FPR1, ATP5B, GNG2, PRKACA, HRAS, HSPA8, PSAP, and GABBR2. The expression of HRAS was different in patients with PD with Braak stages 3 and 4. Conclusion. These 10 hub genes and the metabolic pathways they are enriched in may be involved in the pathogenesis of PD. HRAS may have potential value in predicting the progression of PD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pusheng Quan ◽  
Kai Wang ◽  
Shi Yan ◽  
Shirong Wen ◽  
Chengqun Wei ◽  
...  

AbstractThis study aimed to identify potential novel drug candidates and targets for Parkinson’s disease. First, 970 genes that have been reported to be related to PD were collected from five databases, and functional enrichment analysis of these genes was conducted to investigate their potential mechanisms. Then, we collected drugs and related targets from DrugBank, narrowed the list by proximity scores and Inverted Gene Set Enrichment analysis of drug targets, and identified potential drug candidates for PD treatment. Finally, we compared the expression distribution of the candidate drug-target genes between the PD group and the control group in the public dataset with the largest sample size (GSE99039) in Gene Expression Omnibus. Ten drugs with an FDR < 0.1 and their corresponding targets were identified. Some target genes of the ten drugs significantly overlapped with PD-related genes or already known therapeutic targets for PD. Nine differentially expressed drug-target genes with p < 0.05 were screened. This work will facilitate further research into the possible efficacy of new drugs for PD and will provide valuable clues for drug design.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhixin Wu ◽  
Yinxian Wen ◽  
Guanlan Fan ◽  
Hangyuan He ◽  
Siqi Zhou ◽  
...  

Abstract Background Steroid-induced osteonecrosis of the femoral head (SONFH) is a chronic and crippling bone disease. This study aims to reveal novel diagnostic biomarkers of SONFH. Methods The GSE123568 dataset based on peripheral blood samples from 10 healthy individuals and 30 SONFH patients was used for weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. The genes in the module related to SONFH and the DEGs were extracted for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Genes with |gene significance| > 0.7 and |module membership| > 0.8 were selected as hub genes in modules. The DEGs with the degree of connectivity ≥5 were chosen as hub genes in DEGs. Subsequently, the overlapping genes of hub genes in modules and hub genes in DEGs were selected as key genes for SONFH. And then, the key genes were verified in another dataset, and the diagnostic value of key genes was evaluated by receiver operating characteristic (ROC) curve. Results Nine gene co-expression modules were constructed via WGCNA. The brown module with 1258 genes was most significantly correlated with SONFH and was identified as the key module for SONFH. The results of functional enrichment analysis showed that the genes in the key module were mainly enriched in the inflammatory response, apoptotic process and osteoclast differentiation. A total of 91 genes were identified as hub genes in the key module. Besides, 145 DEGs were identified by DEGs screening and 26 genes were identified as hub genes of DEGs. Overlapping genes of hub genes in the key module and hub genes in DEGs, including RHAG, RNF14, HEMGN, and SLC2A1, were further selected as key genes for SONFH. The diagnostic value of these key genes for SONFH was confirmed by ROC curve. The validation results of these key genes in GSE26316 dataset showed that only HEMGN and SLC2A1 were downregulated in the SONFH group, suggesting that they were more likely to be diagnostic biomarkers of SOFNH than RHAG and RNF14. Conclusions Our study identified that two key genes, HEMGN and SLC2A1, might be potential diagnostic biomarkers of SONFH.


2020 ◽  
Author(s):  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

AbstractSporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. Pathway and GO enrichment analyses of DEGs were performed. Furthermore, the protein-protein interaction (PPI) network was predicted using the IntAct Molecular Interaction Database and visualized with Cytoscape software. In addition, hub genes and important modules were selected based on the network. Finally, we constructed target genes - miRNA regulatory network and target genes - TF regulatory network. Hub genes were validated. A total of 891 DEGs 448 of these DEGs presented significant up regulated, and the remaining 443 down regulated were obtained. Pathway enrichment analysis indicated that up regulated genes were mainly linked with glutamine degradation/glutamate biosynthesis, while the down regulated genes were involved in melatonin degradation. GO enrichment analyses indicated that up regulated genes were mainly linked with chemical synaptic transmission, while the down regulated genes were involved in regulation of immune system process. hub and target genes were selected from the PPI network, modules, and target genes - miRNA regulatory network and target genes - TF regulatory network namely YWHAZ, GABARAPL1, EZR, CEBPA, HSPB8, TUBB2A and CDK14. The current study sheds light on the molecular mechanisms of sCJD and may provide molecular targets and diagnostic biomarkers for sCJD.


2019 ◽  
Author(s):  
Yunze Liu ◽  
Xiaojie Sun ◽  
Aijun Qu

As an evolutionarily conserved mechanism, developmental neuronal remodeling is needed for the proper wiring of the nervous system and is critical for understanding the neurodevelopment mechanisms. Previous studies have shown that during metamorphosis lots of Drosophila melanogaster mushroom body neurons experience stereotypic remodeling. However, the related regulators and downstream executors of pathways are yet unclear, especially studies of transcriptional gene co-expression analysis of nervous systems remain insufficient. In this study, we develop a weighted gene co-expression network (WGCNA) to classify gene modules associated with neuronal remodeling. Moreover, functional and pathway enrichment analysis with protein-protein network construction is applied to detect high informative hub genes in the targeted gene module. Thus, we select a total of five hub genes that play critical roles in neuronal remodeling and identify them with functional enrichment analysis and protein-protein interaction network. Overall, this study provides insight into the underlying molecular mechanism of developmental neuronal remodeling in Drosophila melanogaster.


2019 ◽  
Author(s):  
Yunze Liu ◽  
Xiaojie Sun ◽  
Aijun Qu

As an evolutionarily conserved mechanism, developmental neuronal remodeling is needed for the proper wiring of the nervous system and is critical for understanding the neurodevelopment mechanisms. Previous studies have shown that during metamorphosis lots of Drosophila melanogaster mushroom body neurons experience stereotypic remodeling. However, the related regulators and downstream executors of pathways are yet unclear, especially studies of transcriptional gene co-expression analysis of nervous systems remain insufficient. In this study, we develop a weighted gene co-expression network (WGCNA) to classify gene modules associated with neuronal remodeling. Moreover, functional and pathway enrichment analysis with protein-protein network construction is applied to detect high informative hub genes in the targeted gene module. Thus, we select a total of five hub genes that play critical roles in neuronal remodeling and identify them with functional enrichment analysis and protein-protein interaction network. Overall, this study provides insight into the underlying molecular mechanism of developmental neuronal remodeling in Drosophila melanogaster.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiao-Yang Liao ◽  
Wei-Wen Wang ◽  
Zheng-Hui Yang ◽  
Jun Wang ◽  
Hang Lin ◽  
...  

To complement the molecular pathways contributing to Parkinson’s disease (PD) and identify potential biomarkers, gene expression profiles of two regions of the medulla were compared between PD patients and control. GSE19587 containing two groups of gene expression profiles [6 dorsal motor nucleus of the vagus (DMNV) samples from PD patients and 5 from controls, 6 inferior olivary nucleus (ION) samples from PD patients and 5 from controls] was downloaded from Gene Expression Omnibus. As a result, a total of 1569 and 1647 differentially expressed genes (DEGs) were, respectively, screened in DMNV and ION with limma package ofR. The functional enrichment analysis by DAVID server (the Database for Annotation, Visualization and Integrated Discovery) indicated that the above DEGs may be involved in the following processes, such as regulation of cell proliferation, positive regulation of macromolecule metabolic process, and regulation of apoptosis. Further analysis showed that there were 365 common DEGs presented in both regions (DMNV and ION), which may be further regulated by eight clusters of microRNAs retrieved with WebGestalt. The genes in the common DEGs-miRNAs regulatory network were enriched in regulation of apoptosis process via DAVID analysis. These findings could not only advance the understandings about the pathogenesis of PD, but also suggest potential biomarkers for this disease.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii277-iii277
Author(s):  
Wei Liu ◽  
Yi Chai ◽  
Junhua Wang ◽  
Yuqi Zhang

Abstract BACKGROUND Atypical teratoid/rhabdoid tumors (ATRT) are rare, highly malignant neoplasms arising in infants and young children. However, the biological basis of ATRTs remains poorly understood. In the present study, we employed integrated bioinformatics to investigate the hub genes and potential molecular mechanism in ATRT. METHODS Three microarray datasets, GSE35943, GSE6635 and GSE86574, were downloaded from Gene Expression Omnibus (GEO) which contained a total of 79 samples including 32 normal brain tissue samples and 47 ATRT samples. The RobustRankAggreg method was employed to integrate the results of these gene expression datasets to obtain differentially expressed genes (DEGs). The GO function and KEGG pathway enrichment analysis were conducted at the Enrichr database. The hub genes were screened according to the degree using Cytoscape software. Finally, transcription factor (TF) of hub genes were obtained by the NetworkAnalyst algorithm. RESULTS A total of 297 DEGs, consisting of 94 downregulated DEGs and 103 upregulated DEGs were identified. Functional enrichment analysis revealed that these genes were associated with cell cycle, p53 signaling pathway and DNA replication. Protein-protein interaction (PPI) network analysis revealed that CDK1, CCNA2, BUB1B, CDC20, KIF11, KIF20A, KIF2C, NCAPG, NDC80, NUSAP1, PBK, RRM2, TPX2, TOP2A and TTK were hub genes and these genes could be regulated by MYC, SOX2 and KDM5B according to the results of TF analysis. CONCLUSIONS Our study will improve the understanding of the molecular mechanisms and provide novel therapeutic targets for ATRT.


2020 ◽  
Author(s):  
Zhiyong Lai ◽  
Wenhui Yang ◽  
Weibin Li ◽  
Tiantian Zhang ◽  
Kai Jia ◽  
...  

Abstract Background: Gastric cancer (GC) is the fifth most common kind of malignant tumor, and commonly leads to death. As a subtype of gastric cancer, adenocarcinoma of the esophagogastric junction (AEG), accounts for about 50% of all gastric cancer cases. So far, the systematic co-expression analysis of this tumor has not fully explained its pathogenesis. The purpose of this study was to construct RNAs co-expression networks to predict candidate hub genes associated with the tumorigenesis of AEG. Methods: The RNA-seq data of 22 AEG patients was processed with weighted gene co-expression network analysis strategy. Differentiate the modules with clinical tumor markers and preservation, and carry out gene ontology and pathway enrichment analysis. We identified the co-expression modules and used GO and KEGG terms to investigated the functional enrichment of co-expression genes, suggesting that blue and brown modules are related to the biological processes of tumorigenesis. Results: Twenty-five distinct co-expression gene modules were identified, and as the top hub genes of tumorigenic gene modules, CD93, TRIM28, SLC3A2, CBX4, PATL1, and ZNF473 with high intramodular connectivity were assumed as intramodular hub genes in AEG. Conclusion: The weighted gene co-expression network analysis conducted in this study screened out CD93, TRIM28, SLC3A2, CBX4, PATL1, and ZNF473 may act as candidate biomarker in GC and AEG.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Huiwen Gui ◽  
Qi Gong ◽  
Jun Jiang ◽  
Mei Liu ◽  
Huanyin Li

Purpose. Alzheimer’s disease (AD) is considered to be the most common neurodegenerative disease and also one of the major fatal diseases affecting the elderly, thus bringing a huge burden to society. Therefore, identifying AD-related hub genes is extremely important for developing novel strategies against AD. Materials and Methods. Here, we extracted the gene expression profile GSE63061 from the National Center for Biotechnology Information (NCBI) GEO database. Once the unverified gene chip was removed, we standardized the microarray data after quality control. We utilized the Limma software package to screen the differentially expressed genes (DEGs). We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs. Subsequently, we constructed a protein-protein interaction (PPI) network using the STRING database. Result. We screened 2169 DEGs, comprising 1313 DEGs with upregulation and 856 DEGs with downregulation. Functional enrichment analysis showed that the response of immune, the degranulation of neutrophils, lysosome, and the differentiation of osteoclast were greatly enriched in DEGs with upregulation; peptide biosynthetic process, translation, ribosome, and oxidative phosphorylation were dramatically enriched in DEGs with downregulation. 379 nodes and 1149 PPI edges were demonstrated in the PPI network constructed by upregulated DEGs; 202 nodes and 1963 PPI edges were shown in the PPI network constructed by downregulated DEGs. Four hub genes, including GAPDH, RHOA, RPS29, and RPS27A, were identified to be the newly produced candidates involved in AD pathology. Conclusion. GAPDH, RHOA, RPS29, and RPS27A are expected to be key candidates for AD progression. The results of this study can provide comprehensive insight into understanding AD’s pathogenesis and potential new therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document