scholarly journals Traditional tonifying polyherbal infusion, Jatu-Phala-Tiga, exerts antioxidant activities and extends lifespan of Caenorhabditis elegans

Author(s):  
Palika Wetchakul ◽  
Jo Aan Goon ◽  
Ademola Ezekiel Adekoya ◽  
Opeyemi Joshua Olatunji ◽  
Sutticha Ruangchuay ◽  
...  
2016 ◽  
Author(s):  
Mansour Sobeh ◽  
Esraa A ElHawary ◽  
Herbenya Peixoto ◽  
Rola M Labib ◽  
Heba Handoussa ◽  
...  

Background: Schotia brachypetala Sond. (Fabaceae) is an endemic tree of Southern Africa whose phytochemistry and pharmacology were slightly studied.The present work aimed at profiling the major phenolics compounds present in the hydro-alcoholic extract from S. brachypetala leaves (SBE) using LC/HRESI/MS/MS and NMR and prove their antioxidant capabilities using novel methods. Methods: In vitro assays; DPPH, TEAC persulfate decolorizing kinetic and FRAP assays, and in vivo assays: Caenorhabditis elegans strains maintenance, Intracellular ROS in C. elegans, Survival assay, GFP expression and Subcellular DAF-16 localization were employed to evaluate the antioxidant activity. Results: More than forty polyphenols ,including flavonoid glycosides, galloylated flavonoid glycosides, isoflavones, dihydrochalcones, procyanidins, anthocyanins, hydroxybenzoic acid derivatives, hydrolysable tannins, and traces of methylated and acetylated flavonoid derivatives were identified. Three compounds were isolated and identified from the genus Schotia for the first time, namely gallic acid, myricetin-3-O-α-L-1C4-rhamnoside and quercetin-3-O-L-1C4-rhamnoside.The tested extract was able to protect the worms against juglone induced oxidative stress and attenuate the reactive oxygen species (ROS) accumulation. SBE was also able to attenuate the levels of heat shock protein (HSP) expression. Discussion: A pronounced antioxidant activity in vivo, which can be attributed to its ability to promote the nuclear translocation of DAF-16/FOXO, the main transcription factor regulating the expression of stress response genes. The remarkable antioxidant activity in vitro and in vivo correlates to SBE rich phenolic profile.


2021 ◽  
Vol 14 (2) ◽  
pp. 93
Author(s):  
Parinee Kittimongkolsuk ◽  
Mariana Roxo ◽  
Hanmei Li ◽  
Siriporn Chuchawankul ◽  
Michael Wink ◽  
...  

The tiger milk mushroom, Lignosus rhinocerus (LR), exhibits antioxidant properties, as shown in a few in vitro experiments. The aim of this research was to study whether three LR extracts exhibit antioxidant activities in Caenorhabditis elegans. In wild-type N2 nematodes, we determined the survival rate under oxidative stress caused by increased intracellular ROS concentrations. Transgenic strains, including TJ356, TJ375, CF1553, CL2166, and LD1, were used to detect the expression of DAF-16, HSP-16.2, SOD-3, GST-4, and SKN-1, respectively. Lifespan, lipofuscin, and pharyngeal pumping rates were assessed. Three LR extracts (ethanol, and cold and hot water) protected the worms from oxidative stress and decreased intracellular ROS. The extracts exhibited antioxidant properties through the DAF-16/FOXO pathway, leading to SOD-3 and HSP-16.2 modification. However, the expression of SKN-1 and GST-4 was not changed. All the extracts extended the lifespan. They also reduced lipofuscin (a marker for aging) and influenced the pharyngeal pumping rate (another marker for aging). The extracts did not cause dietary restriction. This novel study provides evidence of the functional antioxidant and anti-aging properties of LR. Further studies must confirm that they are suitable for use as antioxidant supplements.


2016 ◽  
Author(s):  
Mansour Sobeh ◽  
Esraa A ElHawary ◽  
Herbenya Peixoto ◽  
Rola M Labib ◽  
Heba Handoussa ◽  
...  

Background: Schotia brachypetala Sond. (Fabaceae) is an endemic tree of Southern Africa whose phytochemistry and pharmacology were slightly studied.The present work aimed at profiling the major phenolics compounds present in the hydro-alcoholic extract from S. brachypetala leaves (SBE) using LC/HRESI/MS/MS and NMR and prove their antioxidant capabilities using novel methods. Methods: In vitro assays; DPPH, TEAC persulfate decolorizing kinetic and FRAP assays, and in vivo assays: Caenorhabditis elegans strains maintenance, Intracellular ROS in C. elegans, Survival assay, GFP expression and Subcellular DAF-16 localization were employed to evaluate the antioxidant activity. Results: More than forty polyphenols ,including flavonoid glycosides, galloylated flavonoid glycosides, isoflavones, dihydrochalcones, procyanidins, anthocyanins, hydroxybenzoic acid derivatives, hydrolysable tannins, and traces of methylated and acetylated flavonoid derivatives were identified. Three compounds were isolated and identified from the genus Schotia for the first time, namely gallic acid, myricetin-3-O-α-L-1C4-rhamnoside and quercetin-3-O-L-1C4-rhamnoside.The tested extract was able to protect the worms against juglone induced oxidative stress and attenuate the reactive oxygen species (ROS) accumulation. SBE was also able to attenuate the levels of heat shock protein (HSP) expression. Discussion: A pronounced antioxidant activity in vivo, which can be attributed to its ability to promote the nuclear translocation of DAF-16/FOXO, the main transcription factor regulating the expression of stress response genes. The remarkable antioxidant activity in vitro and in vivo correlates to SBE rich phenolic profile.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 704 ◽  
Author(s):  
Siyuan Luo ◽  
Xuelian Jiang ◽  
Liping Jia ◽  
Chengyue Tan ◽  
Min Li ◽  
...  

The aim of this study was to evaluate the antioxidant activities of extracts from olive leaves (EOL). The main contents of EOL were determined by colorimetric methods. The antioxidant activities were assessed by measuring the scavenging free radicals in vitro. To investigate the antioxidant activity in vivo, we detected the survival of Caenorhabditis elegans, under thermal stress. Subsequently the reactive oxygen species (ROS) level, activities of antioxidant enzymes, the expression of HSP-16.2 and the translocation of daf-16 were measured. The results showed that, polyphenols was the main component. EOL could well scavenge DPPH and superoxide anion radicals in vitro. Compared to the control group, the survival rate of C. elegans treated with EOL was extended by 10.43%, under heat stress. The ROS level was reduced, while the expression of hsp-16.2 was increased to protect the organism against the increasing ROS. The level of malondialdehyde (MDA) also decreased sharply. The activities of inner antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) were potentiated, which might have had a correlation with the DAF-16 transcription factor that was induced-turned into the nuclear. Therefore, EOL showed a strong antioxidant ability in vitro and in vivo. Hence, it could be a potential candidate when it came to medicinal and edible plants.


2016 ◽  
Vol 144 ◽  
pp. 122-130 ◽  
Author(s):  
Zhou Xu ◽  
Shiling Feng ◽  
Shian Shen ◽  
Handong Wang ◽  
Ming Yuan ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1999 ◽  
Author(s):  
Nora Tawfeek ◽  
Mansour Sobeh ◽  
Dalia I. Hamdan ◽  
Nawaal Farrag ◽  
Mariana Roxo ◽  
...  

Utilizing bioassay- and TLC-guided column chromatography, fifteen secondary metabolites from Populus alba and eight compounds from Salix subserrata were isolated, including a novel plant metabolite salicyl ether and characterized using ultralviolet light (UV) absorbance, mass spectrometry (MS), 1H-, 13C-NMR (nuclear magnetic resonance), heteronuclear single quantum coherence spectroscopy (HSQC) and heteronuclear multiple bond correlation (HMBC). The extracts, their sub-fractions and the isolated compounds exhibited promising antioxidant activities in vitro in DPPH and FRAP assays. Also, the extracts of P. alba leaf (PL), shoots (PS), and S. subserrata leaf (SL) demonstrated substantial antioxidant activities in vivo in the multicellular model organism Caenorhabditis elegans. For the first time, the isolated secondary metabolites, aromadendrin, tremuloidin, salicin, isorhamnetin-3-O-β-d-rutinoside, gallocatechin, triandrin, and chrysoeriol-7-O-glucuronide were investigated. They exhibited substantial antioxidant activities in vivo. Salicin, isorhamnetin-3-O-β-d-rutinoside and gallocatechin, in particular, protected the worms against a lethal dose of the pro-oxidant juglone (80 µM), decreased the endogenous reactive oxygen species (ROS) level to 45.34%, 47.31%, 68.09% and reduced juglone- induced hsp-16.2::GFP (green fluorescence protein) expression to 79.62%, 70.17%, 26.77%, respectively. However, only gallocatechin induced higher levels of sod-3 expression. These findings support the traditional use of Populus alba and Salix subserrata for treating inflammation especially when ROS are involved.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2017 ◽  
Vol 87 (3-4) ◽  
pp. 191-200 ◽  
Author(s):  
Nidhal Soualeh ◽  
Aliçia Stiévenard ◽  
Elie Baudelaire ◽  
Rachid Soulimani ◽  
Jaouad Bouayed

Abstract. In this study, cytoprotective and antioxidant activities of Rosa canina (RC) and Salix alba (SA), medicinal plants, were studied on mouse primary splenocytes by comparing Controlled Differential Sieving process (CDSp), which is a novel green solvent-free process, versus a conventional technique, employing hydroethanolic extraction (HEE). Thus, preventive antioxidant activity of three plant powders of homogeneous particle sizes, 50–100 µm, 100–180 µm and 180–315 µm, dissolved directly in the cellular buffer, were compared to those of hydroethanolic (HE) extract, at 2 concentrations (250 and 500 µg/mL) in H2O2-treated spleen cells. Overall, compared to HE extract, the superfine powders, i. e., fractions < 180 µm, at the lowest concentration, resulted in greater reactive oxygen species (ROS) elimination, increased glutathione peroxidase (GPx) activity and lower malondialdehyde (MDA) production. Better antioxidant and preventive effects in pre-treated cells were found with the superfine powders for SA (i. e., 50–100 µm and 100–180 µm, both p < 0.001), and with the intermediate powder for RC (i. e., 100–180 µm, p < 0.05) versus HE extract. The activity levels of catalase (CAT) and superoxide dismutase (SOD) in pretreated splenocytes exposed to H2O2, albeit reduced, were near to those in unexposed cells, suggesting that pretreatment with the fine powders has relatively restored the normal levels of antioxidant-related enzymes. These findings supported that CDSp improved the biological activities of plants, avoiding the use of organic solvents and thus it could be a good alternative to conventional extraction techniques.


Sign in / Sign up

Export Citation Format

Share Document