scholarly journals Sea urchin larvae utilize light for regulating the pyloric opening

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Junko Yaguchi ◽  
Shunsuke Yaguchi

Abstract Background Light is essential for various biological activities. In particular, visual information through eyes or eyespots is very important for most of animals, and thus, the functions and developmental mechanisms of visual systems have been well studied to date. In addition, light-dependent non-visual systems expressing photoreceptor Opsins have been used to study the effects of light on diverse animal behaviors. However, it remains unclear how light-dependent systems were acquired and diversified during deuterostome evolution due to an almost complete lack of knowledge on the light-response signaling pathway in Ambulacraria, one of the major groups of deuterostomes and a sister group of chordates. Results Here, we show that sea urchin larvae utilize light for digestive tract activity. We found that photoirradiation of larvae induces pyloric opening even without addition of food stimuli. Micro-surgical and knockdown experiments revealed that this stimulating light is received and mediated by Go(/RGR)-Opsin (Opsin3.2 in sea urchin genomes) cells around the anterior neuroectoderm. Furthermore, we found that the anterior neuroectodermal serotoninergic neurons near Go-Opsin-expressing cells are essential for mediating light stimuli-induced nitric oxide (NO) release at the pylorus. Our results demonstrate that the light>Go-Opsin>serotonin>NO pathway functions in pyloric opening during larval stages. Conclusions The results shown here will lead us to understand how light-dependent systems of pyloric opening functioning via neurotransmitters were acquired and established during animal evolution. Based on the similarity of nervous system patterns and the gut proportions among Ambulacraria, we suggest the light>pyloric opening pathway may be conserved in the clade, although the light signaling pathway has so far not been reported in other members of the group. In light of brain-gut interactions previously found in vertebrates, we speculate that one primitive function of anterior neuroectodermal neurons (brain neurons) may have been to regulate the function of the digestive tract in the common ancestor of deuterostomes. Given that food consumption and nutrient absorption are essential for animals, the acquirement and development of brain-based sophisticated gut regulatory system might have been important for deuterostome evolution.

2020 ◽  
Vol 20 (8) ◽  
pp. 982-988 ◽  
Author(s):  
Le-Le Zhang ◽  
Han Bao ◽  
Yu-Lian Xu ◽  
Xiao-Ming Jiang ◽  
Wei Li ◽  
...  

Background: Cassane-type diterpenoids are widely distributed in the medical plants of genus Caesalpinia. To date, plenty of cassane diterpenoids have been isolated from the genus Caesalpinia, and some of them were documented to exhibit multiple biological activities. However, the effects of these compounds on autophagy have never been reported. Objective: To investigate the effects and mechanisms of the cassane diterpenoids including Phanginin R (PR) on autophagy in Non-Small Cell Lung Cancer (NSCLC) A549 cells. Methods: Western blot analysis and immunofluorescence assay were performed to investigate the effects of the compounds on autophagic flux in A549 cells. The pathway inhibitor and siRNA interference were used to investigate the mechanism of PR. MTT assay was performed to detect cell viability. Results: PR treatment upregulated the expression of phosphatidylethanolamine-modified microtubule-associated protein Light-Chain 3 (LC3-II) in A549 cells. Immunofluorescence assay showed that PR treatment increased the production of red-fluorescent puncta in mRFP-GFP-LC3 plasmid-transfected cells, indicating PR promoted autophagic flux in A549 cells. PR treatment activated the c-Jun N-terminal Kinase (JNK) signaling pathway while it did not affect the classical Akt/mammalian Target of Rapamycin (mTOR) pathway. Pretreatment with the JNK inhibitor SP600125 or siRNA targeting JNK or c-Jun suppressed PR-induced autophagy. In addition, cotreatment with the autophagy inhibitor Chloroquine (CQ) or inhibition of the JNK/c-Jun signaling pathway increased PR-induced cytotoxicity. Conclusion: PR induced cytoprotective autophagy in NSCLC A549 cells via the JNK/c-Jun signaling pathway, and autophagy inhibition could further improve the anti-cancer potential of PR.


2007 ◽  
Vol 33 (2) ◽  
pp. 84-91 ◽  
Author(s):  
A. Meziti ◽  
K. Ar. Kormas ◽  
M. -A. Pancucci-Papadopoulou ◽  
M. Thessalou-Legaki

2004 ◽  
Vol 121 (3) ◽  
pp. 225-235 ◽  
Author(s):  
Fernando Covián-Nares ◽  
Guadalupe Martı́nez-Cadena ◽  
Juana López-Godı́nez ◽  
Ekaterina Voronina ◽  
Gary M Wessel ◽  
...  

2017 ◽  
Author(s):  
Christopher E. Laumer ◽  
Harald Gruber-Vodicka ◽  
Michael G. Hadfield ◽  
Vicki B. Pearse ◽  
Ana Riesgo ◽  
...  

AbstractThe phylogenetic placement of the morphologically simple placozoans is crucial to understanding the evolution of complex animal traits. Here, we examine the influence of adding new genomes from placozoans to a large dataset designed to study the deepest splits in the animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria (=Planulozoa), also seen in most published work to date, depending on the orthologues selected to construct the matrix. We demonstrate that a majority of genes show evidence of compositional heterogeneity, and that the support for Planulozoa can be assigned to this source of systematic error. In interpreting this placozoan-cnidarian clade, we caution against a peremptory reading of placozoans as secondarily reduced forms of little relevance to broader discussions of early animal evolution.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ivan Larderet ◽  
Pauline MJ Fritsch ◽  
Nanae Gendre ◽  
G Larisa Neagu-Maier ◽  
Richard D Fetter ◽  
...  

Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 571 ◽  
Author(s):  
Eugenie Mussard ◽  
Annabelle Cesaro ◽  
Eric Lespessailles ◽  
Brigitte Legrain ◽  
Sabine Berteina-Raboin ◽  
...  

Traditionally, Andrographis paniculata has been used as an herbal remedy for lung infection treatments. Its leaves contain a diterpenoid labdane called andrographolide responsible for a wide range of biological activities such as antioxidant, anti-inflammatory, and anti-cancer properties. This manuscript is a brief review of the antioxidant mechanisms and the regulation of the Nrf2 (nuclear factor (erythroid-derived 2)-like 2) signaling pathway by andrographolide.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Xin ◽  
Qin Yuan ◽  
Chaoqi Liu ◽  
Changcheng Zhang ◽  
Ding Yuan

Abstract It has been demonstrated that Chikusetsusaponin IVa (CsIVa) possesses abundant biological activities. Herein, using LPS to establish acute inflammation model of mouse liver and cell line inflammation model, we investigated whether miR-155/GSK-3β regulated NF-κB signaling pathway, and CsIVa exerted anti-inflammatory effects by regulating miR-155/GSK-3β signaling pathway. Our results showed that LPS induced high expression of miR-155 and miR-155 promoted macrophage activation through GSK-3β. In addition, CsIVa inhibited inflammatory responses in LPS-induced mouse liver and RAW264.7 cells. Furthermore, we demonstrated that CsIVa improved the inflammatory response in LPS-induced RAW264.7 cells by inhibiting miR-155, increasing GSK-3β expression, and inhibiting NF-κB signaling pathway. In conclusion, our study reveals that CsIVa suppresses LPS-triggered immune response by miR-155/GSK-3β-NF-κB signaling pathway.


Microbiology ◽  
2015 ◽  
Vol 161 (6) ◽  
pp. 1198-1210 ◽  
Author(s):  
Viveka Vadyvaloo ◽  
Austin K. Viall ◽  
Clayton O. Jarrett ◽  
Angela K. Hinz ◽  
Daniel E. Sturdevant ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Quanxin Ma ◽  
Kai Wang ◽  
Qinqin Yang ◽  
Shun Ping ◽  
Weichun Zhao ◽  
...  

Veronicastrum axillare is a traditional medical plant in China which is widely used in folk medicine due to its versatile biological activities, especially for its anti-inflammatory effects. However, the detailed mechanism underlying this action is not clear. Here, we studied the protective effects of V. axillare against acute lung injury (ALI), and we further explored the pharmacological mechanisms of this action. We found that pretreatment with V. axillare suppressed the release of proinflammatory cytokines in the serum of ALI mice. Histological analysis of lung tissue demonstrated that V. axillare inhibited LPS-induced lung injury, improved lung morphology, and reduced the activation of nuclear factor-κB (NF-κB) in the lungs. Furthermore, the anti-inflammatory actions of V. axillare were investigated in vitro. We observed that V. axillare suppressed the mRNA expression of interleukin-1β (IL-1β), IL-6, monocyte chemotactic protein-1 (MCP-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells challenged with LPS. Furthermore, pretreatment of V. axillare in vitro reduced the phosphorylation of p65 and IκB-α which is activated by LPS. In conclusion, our data firstly demonstrated that the anti-inflammatory effects of V. axillare against ALI were achieved through downregulation of the NF-κB signaling pathway, thereby reducing the production of inflammatory mediators.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Christopher Mogg ◽  
Christopher Bonner ◽  
Li Wang ◽  
Johann Schernthaner ◽  
Myron Smith ◽  
...  

ABSTRACT Antofine, a phenanthroindolizidine alkaloid, is a bioactive natural product isolated from milkweeds that exhibits numerous biological activities, including anticancer, antimicrobial, antiviral, and anti-inflammatory properties. However, the direct targets and mode of action of antofine have not been determined. In this report, we show that antofine displays antifungal properties against the phytopathogen Fusarium graminearum, the cause of Fusarium head blight disease (FHB). FHB does devastating damage to agriculture, causing billions of dollars in economic losses annually. We therefore sought to understand the mode of action of antofine in F. graminearum using insights from yeast chemical genomic screens. We used haploinsufficiency profiling (HIP) to identify putative targets of antofine in yeast and identified three candidate targets, two of which had homologs in F. graminearum. The Fusarium homologues of two targets, glutamate dehydrogenase (FgGDH) and resistance to rapamycin deletion 2 (FgRRD2), can bind antofine. Of the two genes, only the Fgrrd2 knockout displayed a loss of virulence in wheat, indicating that RRD2 is an antivirulence target of antofine in F. graminearum. Mechanistically, we demonstrate that antofine disrupts the interaction between FgRRD2 and FgTap42, which is part of the Tap42-phosphatase complex in the target of rapamycin (TOR) signaling pathway, a central regulator of cell growth in eukaryotes and a pathway of extensive study for controlling numerous pathologies. IMPORTANCE Fusarium head blight caused by the fungal pathogen Fusarium graminearum is a devastating disease of cereal crops worldwide, with limited effective chemical treatments available. Here we show that the natural alkaloid compound antofine can inhibit fusarium head blight in wheat. Using yeast genomic screening, we identified the TOR pathway component RRD2 as a target of antofine that is also required for F. graminearum pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document