scholarly journals Identification of the ferroptosis-related long non-coding RNAs signature to improve the prognosis prediction and immunotherapy response in patients with NSCLC

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Meng Li ◽  
Yanpeng Zhang ◽  
Meng Fan ◽  
Hui Ren ◽  
Mingwei Chen ◽  
...  

Abstract Background Non-small cell lung cancer (NSCLC) is the most prevalent type of lung carcinoma with an unfavorable prognosis. Ferroptosis is involved in the development of multiple cancers. Whereas, the prognostic value of ferroptosis-related lncRNAs in NSCLC remains uncertain. Methods Gene expression profiles and clinical information of NSCLC were retrieved from the TCGA database. Ferroptosis-related genes (FRGs) were explored in the FerrDb database and previous studies, ferroptosis-related lncRNAs (FRGs-lncRNAs) were identified by the correlation analysis and the LncTarD database. The differentially expressed FRGs-lncRNAs were screened and FRGs-lncRNAs associated with the prognosis were explored by univariate Cox regression analysis and Kaplan–Meier survival analysis. Then, an FRGs-lncRNAs signature was constructed and verified by the Lasso-penalized Cox analysis. Finally, the potential correlation between risk score, immune checkpoint genes, and chemotherapeutic sensitivity was further investigated. Results 129 lncRNAs with a potential regulatory relationship with 59 differentially expressed FRGs were found in NSCLC, of which 10 were related to the prognosis of NSCLC (P < 0.05). 9 prognostic-related FRGs-lncRNAs were used to construct the prognostic model and stratify NSCLC patients into high- and low-risk groups. A worse outcome was found in patients with high risk (P < 0.05). Moreover, a good predictive capacity of this signature in predicting NSCLC prognosis was confirmed. Additionally, 45 immune checkpoint genes and 4 chemotherapeutics drugs for NSCLC were identified to be correlated with the risk score. Conclusion A novel FRGs-lncRNAs signature was successfully constructed, which may contribute to improving the management strategies of NSCLC.

2021 ◽  
Author(s):  
Meng Li ◽  
Yanpeng Zhang ◽  
Meng Fan ◽  
Hui Ren ◽  
Mingwei Chen ◽  
...  

Abstract Background: Non-small cell lung cancer (NSCLC) is the most prevalent type of lung carcinoma with an unfavorable prognosis. Ferroptosis, a novel iron-dependent programmed cell death, is involved in the development of multiple cancers. Of note, the prognostic value of ferroptosis-related lncRNAs in NSCLC remains uncertain. Methods: Gene expression profiles and clinical information of NSCLC were retrieved from the TCGA database. Ferroptosis-related genes (FRGs) were explored in the FerrDb database and ferroptosis-related lncRNAs (FRGs-lncRNAs) were identified by the correlation analysis and the LncTarD database. Next, The differentially expressed FRGs-lncRNAs were screened and FRGs-lncRNAs associated with the prognosis were explored by univariate Cox regression analysis and Kaplan-Meier survival analysis. Then, an FRGs-lncRNAs signature was constructed by the Lasso-penalized Cox model in the training cohort and verified by internal and external validation. Finally, the potential correlation between risk score, immune response, and chemotherapeutic sensitivity was further investigated.Results: 129 lncRNAs with a potential regulatory relationship with 59 differentially expressed FRGs were found in NSCLC and 10 FRGs-lncRNAs associated with the prognosis of NSCLC were identified (P<0.05). 9 prognostic-related FRGs-lncRNAs (AQP4-AS1, DANCR, LINC00460, LINC00892, LINC00996, MED4-AS1, SNHG7, UCA1, and WWC2-AS2) were used to construct the prognostic model and stratify patients with NSCLC into high- and low-risk groups. Kaplan-Meier analysis demonstrated a worse outcome in patients with high risk (P<0.05). Moreover, a good predictive capacity of this signature in predicting NSCLC prognosis was confirmed by the ROC curve analysis. Additionally, 45 immune checkpoint genes and 8 m6A-related genes were found differentially expressed in the two risk groups, and the sensitivity of 28 chemotherapeutics were identified to be correlated with the risk score. Conclusion: A novel FRGs-lncRNAs signature was successfully constructed, which may contribute to improving the management strategies of NSCLC.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xu Wang ◽  
Yuanmin Xu ◽  
Ting Li ◽  
Bo Chen ◽  
Wenqi Yang

Abstract Background Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied. Methods Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database (https://portal.gdc.cancer.gov). Differentially expressed ARGs and ARGs related to overall patient survival were identified. Cox proportional-hazard models were used to investigate the association between ARG expression profiles and patient prognosis. Results Twenty ARGs were significantly associated with the overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥ 3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p < 0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 1-, 3-, and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians. Conclusion The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment.


2021 ◽  
Author(s):  
Shaopei Ye ◽  
Wenbin Tang ◽  
Ke Huang

Abstract Background: Autophagy is a biological process to eliminate dysfunctional organelles, aggregates or even long-lived proteins. . Nevertheless, the potential function and prognostic values of autophagy in Wilms Tumor (WT) are complex and remain to be clarifed. Therefore, we proposed to systematically examine the roles of autophagy-associated genes (ARGs) in WT.Methods: Here, we obtained differentially expressed autophagy-related genes (ARGs) between healthy and Wilms tumor from Therapeutically Applicable Research To Generate Effective Treatments(TARGET) and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology. Then univariate COX regression analysis and multivariate COX regression analysis were performed to acquire nine autophagy genes related to WT patients’ survival. According to the risk score, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis.Results: Eighteen DEARGs were identifed, and nine ARGs were fnally utilized to establish the FAGs based signature in the TCGA cohort. we found that patients in the high-risk group were associated with mutations in TP53. We further conducted CIBERSORT analysis, and found that the infiltration of Macrophage M1 was increased in the high-risk group. Finally, the expression levels of crucial ARGs were verifed by the experiment, which were consistent with our bioinformatics analysis.Conclusions: we emphasized the clinical significance of autophagy in WT, established a prediction system based on autophagy, and identified a promising therapeutic target of autophagy for WT.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2020 ◽  
Author(s):  
Xiaohong - Liu ◽  
Qian - Xu ◽  
Zi-Jing - Li ◽  
Bin - Xiong

Abstract BackgroundMetabolic reprogramming is an important hallmark in the development of malignancies. Numerous metabolic genes have been demonstrated to participate in the progression of hepatocellular carcinoma (HCC). However, the prognostic significance of the metabolic genes in HCC remains elusive. MethodsWe downloaded the gene expression profiles and clinical information from the GEO, TCGA and ICGC databases. The differently expressed metabolic genes were identified by using Limma R package. Univariate Cox regression analysis and LASSO (Least absolute shrinkage and selection operator) Cox regression analysis were utilized to uncover the prognostic significance of metabolic genes. A metabolism-related prognostic model was constructed in TCGA cohort and validated in ICGC cohort. Furthermore, we constructed a nomogram to improve the accuracy of the prognostic model by using the multivariate Cox regression analysis.ResultsThe high-risk score predicted poor prognosis for HCC patients in the TCGA cohort, as confirmed in the ICGC cohort (P < 0.001). And in the multivariate Cox regression analysis, we observed that risk score could act as an independent prognostic factor for the TCGA cohort (HR (hazard ratio) 3.635, 95% CI (confidence interval)2.382-5.549) and the ICGC cohort (HR1.905, 95%CI 1.328-2.731). In addition, we constructed a nomogram for clinical use, which suggested a better prognostic model than risk score.ConclusionsOur study identified several metabolic genes with important prognostic value for HCC. These metabolic genes can influence the progression of HCC by regulating tumor biology and can also provide metabolic targets for the precise treatment of HCC.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xin Qiu ◽  
Qin-Han Hou ◽  
Qiu-Yue Shi ◽  
Hai-Xing Jiang ◽  
Shan-Yu Qin

BackgroundIntratumoral oxidative stress (OS) has been associated with the progression of various tumors. However, OS has not been considered a candidate therapeutic target for pancreatic cancer (PC) owing to the lack of validated biomarkers.MethodsWe compared gene expression profiles of PC samples and the transcriptome data of normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to identify differentially expressed OS genes in PC. PC patients’ gene profile from the Gene Expression Omnibus (GEO) database was used as a validation cohort.ResultsA total of 148 differentially expressed OS-related genes in PC were used to construct a protein-protein interaction network. Univariate Cox regression analysis, least absolute shrinkage, selection operator analysis revealed seven hub prognosis-associated OS genes that served to construct a prognostic risk model. Based on integrated bioinformatics analyses, our prognostic model, whose diagnostic accuracy was validated in both cohorts, reliably predicted the overall survival of patients with PC and cancer progression. Further analysis revealed significant associations between seven hub gene expression levels and patient outcomes, which were validated at the protein level using the Human Protein Atlas database. A nomogram based on the expression of these seven hub genes exhibited prognostic value in PC.ConclusionOur study provides novel insights into PC pathogenesis and provides new genetic markers for prognosis prediction and clinical treatment personalization for PC patients.


Author(s):  
Dafeng Xu ◽  
Yu Wang ◽  
Jincai Wu ◽  
Yuliang Zhang ◽  
Zhehao Liu ◽  
...  

Background: The prognosis of patients with hepatocellular carcinoma (HCC) is negatively affected by the lack of effective prognostic indicators. The change of tumor immune microenvironment promotes the development of HCC. This study explored new markers and predicted the prognosis of HCC patients by systematically analyzing immune characteristic genes.Methods: Immune-related genes were obtained, and the differentially expressed immune genes (DEIGs) between tumor and para-cancer samples were identified and analyzed using gene expression profiles from TCGA, HCCDB, and GEO databases. An immune prognosis model was also constructed to evaluate the predictive performance in different cohorts. The high and low groups were divided based on the risk score of the model, and different algorithms were used to evaluate the tumor immune infiltration cell (TIIC). The expression and prognosis of core genes in pan-cancer cohorts were analyzed, and gene enrichment analysis was performed using clusterProfiler. Finally, the expression of the hub genes of the model was validated by clinical samples.Results: Based on the analysis of 730 immune-related genes, we identified 64 common DEIGs. These genes were enriched in the tumor immunologic related signaling pathways. The first 15 genes were selected using RankAggreg analysis, and all the genes showed a consistent expression trend across multi-cohorts. Based on lasso cox regression analysis, a 5-gene signature risk model (ATG10, IL18RAP, PRKCD, SLC11A1, and SPP1) was constructed. The signature has strong robustness and can stabilize different cohorts (TCGA-LIHC, HCCDB18, and GSE14520). Compared with other existing models, our model has better performance. CIBERSORT was used to assess the landscape maps of 22 types of immune cells in TCGA, GSE14520, and HCCDB18 cohorts, and found a consistent trend in the distribution of TIIC. In the high-risk score group, scores of Macrophages M1, Mast cell resting, and T cells CD8 were significantly lower than those of the low-risk score group. Different immune expression characteristics, lead to the different prognosis. Western blot demonstrated that ATG10, PRKCD, and SPP1 were highly expressed in cancer tissues, while IL18RAP and SLC11A1 expression in cancer tissues was lower. In addition, IL18RAP has a highly positive correlation with B cell, macrophage, Neutrophil, Dendritic cell, CD8 cell, and CD4 cell. The SPP1, PRKCD, and SLC11A1 genes have the strongest correlation with macrophages. The expression of ATG10, IL18RAP, PRKCD, SLC11A1, and SPP1 genes varies among different immune subtypes and between different T stages.Conclusion: The 5-immu-gene signature constructed in this study could be utilized as a new prognostic marker for patients with HCC.


2020 ◽  
Author(s):  
Xing Chen ◽  
Junjie Zheng ◽  
Min ling Zhuo ◽  
Ailong Zhang ◽  
Zhenhui You

Abstract Background: Breast cancer (BRCA) represents the most common malignancy among women worldwide that with high mortality. Radiotherapy is a prevalent therapeutic for BRCA that with heterogeneous effectiveness among patients. Methods: we proposed to develop a gene expression-based signature for BRCA radiotherapy sensitivity prediction. Gene expression profiles of BRCA samples from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) were obtained and used as training and independent testing dataset, respectively. Differential expression genes (DEGs) in BRCA tumor samples compared with their paracancerous samples in the training set were identified by using edgeR Bioconductor package followed by dimensionality reduction through autoencoder method and univariate Cox regression analysis to screen genes among DEGs that with significant prognosis significance in patients that were previously treated with radiation. LASSO Cox regression method was applied to screen optimal genes for constructing radiotherapy sensitivity prediction signature. Results: 603 DEGs were obtained in BRCA tumor samples, and seven out of which were retained after univariate cox regression analysis. LASSO Cox regression analysis finally remained six genes based on which the radiotherapy sensitivity prediction model was constructed. The signature was proved to be robust in both training and independent testing sets and an independent marker for BRCA radiotherapy sensitivity prediction. Conclusions: this study should be helpful for BRCA patients’ therapeutics selection and clinical decision.


2021 ◽  
Author(s):  
Jingyi Liu ◽  
Siyuan Tian ◽  
Yuwei Ling ◽  
Xinyi Zhang ◽  
Yan Li ◽  
...  

Abstract Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks effective therapeutic targets. Immunotherapy is considered as a novel treatment strategy for TNBC. However, only some patients could benefit from the treatment. Limited studies have comprehensively explored expression patterns and prognostic value of immune checkpoint genes (ICGs) in TNBC. In this study, we downloaded relevant ICGs expression profiles and clinical TNBC data from the Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was employed to develop a multi-gene signature for predicting the prognostic outcome. PDCD1, PDCD1LG2 and KIR3DL2 were identified as hub genes and incorporated into the model. This gene signature could stratify patients into two prognostic subgroups, and unfavorable clinical outcomes were observed in high-risk patients. The predictive performance was assessed by the receiver operating characteristic curves. Moreover, we also analyzed differences in immune status and therapeutic response between both groups. This novel gene signature may be served as a robust prognostic marker, but also an indicator reflecting immunotherapy response.


2021 ◽  
Vol 11 ◽  
Author(s):  
Huadi Shi ◽  
Fulan Zhong ◽  
Xiaoqiong Yi ◽  
Zhenyi Shi ◽  
Feiyan Ou ◽  
...  

Background: Autophagy plays an important role in the development of cancer. However, the prognostic value of autophagy-related genes (ARGs) in cervical cancer (CC) is unclear. The purpose of this study is to construct a survival model for predicting the prognosis of CC patients based on ARG signature.Methods: ARGs were obtained from the Human Autophagy Database and Molecular Signatures Database. The expression profiles of ARGs and clinical data were downloaded from the TCGA database. Differential expression analysis of CC tissues and normal tissues was performed using R software to screen out ARGs with an aberrant expression. Univariate Cox, Lasso, and multivariate Cox regression analyses were used to construct a prognostic model which was validated by using the test set and the entire set. We also performed an independent prognostic analysis of risk score and some clinicopathological factors of CC. Finally, a clinical practical nomogram was established to predict individual survival probability.Results: Compared with normal tissues, there were 63 ARGs with an aberrant expression in CC tissues. A risk model based on 3 ARGs was finally obtained by Lasso and Cox regression analysis. Patients with high risk had significantly shorter overall survival (OS) than low-risk patients in both train set and validation set. The ROC curve validated its good performance in survival prediction, suggesting that this model has a certain extent sensitivity and specificity. Multivariate Cox analysis showed that the risk score was an independent prognostic factor. Finally, we mapped a nomogram to predict 1-, 3-, and 5-year survival for CC patients. The calibration curves indicated that the model was reliable.Conclusion: A risk prediction model based on CHMP4C, FOXO1, and RRAGB was successfully constructed, which could effectively predict the prognosis of CC patients. This model can provide a reference for CC patients to make precise treatment strategy.


Sign in / Sign up

Export Citation Format

Share Document