scholarly journals Long non-coding RNA LINC01194 promotes the proliferation, migration and invasion of lung adenocarcinoma cells by targeting miR-641/SETD7 axis

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Fanmei Meng ◽  
Yijing Zhou ◽  
Baohua Dong ◽  
Aiqin Dong ◽  
Jingtao Zhang

Abstract Background It is increasingly evidenced that long non-coding RNAs (lncRNAs) play an important role in various diseases. LncRNA LINC01194 acts as an oncogene in several cancer types. Nevertheless, the role of LINC01194 in lung adenocarcinoma (LUAD) has not yet been revealed. Methods qRT-PCR was used to detect the expression of LINC01194, miR-641 and SETD7 mRNA, while western blot was exploited to examine SETD7 protein level. Cell proliferation was detected by colony formation and EdU assays. Transwell assays detected cell migration and invasion. TUNEL assay and flow cytometry analysis were used to detect cell apoptosis. RIP, RNA pull down and luciferase reporter assays detected the binding among LINC01194, miR-641 and SETD7. Results LINC01194 was significantly upregulated in LUAD tissues and cell lines. Knockdown of LINC01194 resulted in decreased cell proliferation, migration and invasion, and increased apoptosis. Mechanistic experiments unveiled that LINC01194 augmented SETD7 expression in LUAD cells by competitively interacting with miR-641. Rescue experiments showed that miR-641 inhibition and SETD7 overexpression rescued the repressing impacts on LUAD cell proliferation, migration and invasion caused by LINC01194 knockdown. Conclusion LINC01194 promotes the progression of LUAD by enhancing miR-641-targeted SETD7. The LINC01194/miR-641/SETD7 axis might provide new molecular targets for treating LUAD.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Honggang Kang ◽  
Dan Ma ◽  
Jing Zhang ◽  
Jun Zhao ◽  
Mengxiang Yang

Abstract Background Lung adenocarcinoma (LUAD) is known to be one of the leading causes of cancer-related deaths globally. In recent decades, long non-coding RNAs (lncRNAs) have been indicated to exert pivotal regulating functions in multiple biological behaviors in the initiation and development of LUAD. However, the functional mechanism of lncRNA GATA binding protein 6 antisense RNA 1 (GATA6-AS1) in LUAD has not been explored. Methods In the current study, GATA6-AS1 expression in LUAD tissues was revealed. Meanwhile, GATA6-AS1 expression in LUAD cells was investigated via RT-qPCR analysis. After A549 and H1975 cells were transfected with GATA6-AS1 overexpression plasmids, EdU and colony formation assays, TUNEL assays and flow cytometry analyses, as well as wound healing and Transwell assays were conducted to detect cell proliferation, apoptosis, migration and invasion. Afterwards, bioinformatic tools, western blot analyses, dual-luciferase reporter assays, and RNA immunoprecipitation (RIP) assays were performed to investigate the correlation of microRNA-4530 (miR-4530), GATA6-AS1 and GATA6. Results We found that GATA6-AS1 expression was low-expressed in LUAD tissues and cells. Furthermore, the upregulation of GATA6-AS1 suppressed the proliferative, migration and invasion abilities, as well as promoted apoptotic rate of A549 and H1975 cells. Moreover, the mechanistic investigations revealed that GATA6-AS1 upregulated the expression of its cognate sense gene GATA6 by binding with miR-4530, thereby modulating the malignant progression of LUAD cells. Conclusions GATA6-AS1 repressed LUAD cell proliferation, migration and invasion, and promoted cell apoptosis via regulation of the miR-4530/GATA6 axis, indicating GATA6-AS1 as a new prognostic biomarker for LUAD.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuanyong Wang ◽  
Minge Ma ◽  
Chuan Li ◽  
Yuling Yang ◽  
Maolong Wang

GAS6 antisense RNA 1 (GAS6-AS1) is a long non-coding RNA involved in hepatocellular carcinoma and gastric cancer. However, the functional role of GAS6-AS1 in lung adenocarcinoma (LUAD) remains unclear. In the present study, qRT-PCR was used to measure the levels of GAS6-AS1, GIMAP6 and miR-24-3p expression in LUAD samples and cell lines. CCK-8 and colony formation assays were used to determine cell proliferation. Cell migration and invasion were evaluated using wound healing and transwell assays, respectively. The potential interactions between molecules were assessed using RNA immunoprecipitation and luciferase reporter assays. Western blot analysis was used to quantify protein expression. The anti-tumor effect of over-expressed GAS6-AS1 on LUAD was also examined in vivo in xenograft tumor experiments. The expression of GAS6-AS1 was notably downregulated in LUAD samples and cell lines and associated with a poor prognosis. GAS6-AS1 overexpression inhibited the migration and invasion of A549 and H1650 cells. Down-expressed GAS6-AS1 acted as a sponge for miR-24-3p and down-regulated the expression of its target, GTPase IMAP Family Member 6. These findings suggested that GAS6-AS1 might represent a potential diagnostic biomarker for LUAD.


2020 ◽  
Author(s):  
Xiaodong Huo ◽  
Huixing Wang ◽  
Ning Jiang ◽  
Kuo Yang ◽  
Bin Huo ◽  
...  

Abstract Background: Accumulating evidence has indicated the remarkable roles of long non-coding RNAs (lncRNAs) as oncogenes or tumor suppressors in many malignancies. The involvement of lncRNA GATA6-AS1 in cancers remains largely undiscovered. Herein, our research was aimed at elucidating the function and mechanism of GATA6-AS1 in lung adenocarcinoma (LUAD).Methods: Gene expression was measured through qRT-PCR and WB. Cell proliferation ratio was determined using CCK-8 and EdU assays. Cell apoptosis ratio was determined using TUNEL and flow cytometry assays. Molecular interactions were examined through RIP, RNA pull-down and luciferase reporter assays.Results: GATA6-AS1 expression was markedly down-regulated in LUAD cell lines. GATA6-AS1 could inhibit LUAD cell proliferation and promote cell apoptosis. Mechanistically, GATA6-AS1 was identified as the molecular sponge for miR-331-3p, whose knockdown in LUAD cells could reinforce the tumor-suppressing effects of GATA6-AS1 overexpression. Moreover, GATA6-AS1 functions as a competing endogenous RNA (ceRNA) through sequestering miR-331-3p to deregulate SOCS1, thus inhibiting JAK2/STAT3 signaling pathway and suppressing LUAD cell viability.Conclusions: These results demonstrate the tumor-suppressing function and mechanism of lncRNA GATA6-AS1 in LUAD cells. The axis of GATA6-AS1/miR-331-3p/SOCS1/JAK2/STAT3 can be adopted as a novel approach for LUAD treatment.


2020 ◽  
Author(s):  
Yu’e Han ◽  
Xing Liu ◽  
Guangling Li ◽  
Xia Ju ◽  
Zhongyi Song

Abstract Background Previous studies have shown that many long noncoding RNAs (lncRNAs) are involved in the pathogenesis of nasopharyngeal carcinoma (NPC). However, the regulatory mechanism of lncRNA SNHG6 remains unknown. Therefore, this study was design to preliminarily elucidate the role of SNHG6 in NPC. Methods The mRNA expression was detected by RT-qPCR. CCK-8, Transwell and dual luciferase reporter assays were used to investigate the function of SNHG6 in NPC. Results Upregulation of SNHG6 and downregulation of miR-944 were identified in NPC and were associated with TNM stage and distant metastasis in NPC patients. Additionally, SNHG6 acts as a molecular sponge of miR-944. More importantly, SNHG6 promoted NPC cell proliferation, migration and invasion by downregulating miR-944. Further, RGS17 was confirmed to be a direct target of miR-944. MiR-944 restrained NPC progression by targeting RGS17. Besides that, knockdown of RGS17 was found to block NPC progression. Upregulation of SNHG6 weakened the suppressive effect of RGS17 knockdown in NPC. Conclusion LncRNA SNHG6 promotes tumorigenesis of NPC by competitively binding to miR-944 with RGS17.


Author(s):  
Baiyin Mu ◽  
Chenlan Lv ◽  
Qingli Liu ◽  
Hong Yang

Abstract There is emerging evidence that dysregulation of long non-coding RNAs (lncRNAs) is associated with hepatocellular carcinoma (HCC). Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) functions as an oncogenic regulator in various malignancies. Nonetheless, the potential role of ZEB1-AS1 in HCC remains poorly elucidated. Herein, qRT-PCR was employed for examining ZEB1-AS1, miR-299-3p and E2F1 mRNA expressions in HCC cells and tissues. MTT assay was performed to evaluate cell proliferation. Transwell assay was utilized for evaluating cancer cell migration and invasion. Western blot was employed for measuring E2F1 protein expression. What’s more, dual-luciferase reporter assay was utilized for verifying the targeting relationships between ZEB1-AS1 and miR-299-3p, as well as E2F1 and miR-299-3p. It was demonstrated that, in HCC tissues and cells, ZEB1-AS1 expression was markedly increased, and meanwhile, its high expression level is related to the unfavorable clinicopathologic indicators. ZEB1-AS1 overexpression facilitated HCC cell proliferation, migration and invasion, while its knockdown led to the opposite effects. In terms of mechanism, we discovered that ZEB1-AS1 could decoy miR-299-3p and up-regulate E2F1 expression. This work reveals the functions and mechanism of ZEB1-AS1 in HCC tumorigenesis and progression, which provides novel biomarkers and therapeutic targets for HCC.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Weiwei Liu ◽  
Dongmei Yao ◽  
Bo Huang

Abstract Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 921-931
Author(s):  
Juan Zhao ◽  
Xue-Bin Zeng ◽  
Hong-Yan Zhang ◽  
Jie-Wei Xiang ◽  
Yu-Song Liu

AbstractLong non-coding RNA forkhead box D2 adjacent opposite strand RNA 1 (FOXD2-AS1) has emerged as a potential oncogene in several tumors. However, its biological function and potential regulatory mechanism in glioma have not been fully investigated to date. In the present study, RT-qPCR was conducted to detect the levels of FOXD2-AS1 and microRNA (miR)-506-5p, and western blot assays were performed to measure the expression of CDK2, cyclinE1, P21, matrix metalloproteinase (MMP)7, MMP9, N-cadherin, E-cadherin and vimentin in glioma cells. A luciferase reporter assay was performed to verify the direct targeting of miR-506-5p by FOXD2-AS1. Subsequently, cell viability was analyzed using the CCK-8 assay. Cell migration and invasion were analyzed using Transwell and wound healing assays, respectively. The results demonstrated that FOXD2-AS1 was significantly overexpressed in glioma cells, particularly in U251 cells. Knockdown of FOXD2-AS1 in glioma cells significantly inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) and regulated the expression of CDK2, cyclinE1, P21, MMP7 and MMP9. Next, a possible mechanism for these results was explored, and it was observed that FOXD2-AS1 binds to and negatively regulates miR-506-5p, which is known to be a tumor-suppressor gene in certain human cancer types. Furthermore, overexpression of miR-506-5p significantly inhibited cell proliferation, migration, invasion and EMT, and these effects could be reversed by transfecting FOXD2-AS1 into the cells. In conclusion, our data suggested that FOXD2-AS1 contributed to glioma proliferation, metastasis and EMT via competitively binding to miR-506-5p. FOXD2-AS1 may be a promising target for therapy in patients with glioma.


2018 ◽  
Vol 49 (4) ◽  
pp. 1403-1419 ◽  
Author(s):  
Yunxiuxiu Xu ◽  
Xinxi Luo ◽  
Wenguang He ◽  
Guangcheng Chen ◽  
Yanshan Li ◽  
...  

Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC.


2015 ◽  
Vol 35 (6) ◽  
pp. 2360-2370 ◽  
Author(s):  
Ze-Tian Yang ◽  
Zhihong Li ◽  
Xian-Guo Wang ◽  
Tao Tan ◽  
Frank Yi ◽  
...  

Objective: To investigate the expression of long non-coding RNA ZXF2 in lung adenocarcinoma tissues and its effect on cell proliferation, migration and invasion. Methods: Forty pairs of cancerous and adjacent non-cancerous lung adenocarcinoma specimens were collected for the studies. Quantitative real-time PCR was used to analyze the expression of ZXF2 in tumor tissues and adjacent normal tissues. The expression of ZXF2 was correlated with patients' clinico-pathological data. Molecular pathway controlled by ZXF2 was explored by using small interfering RNA (siRNA) technology. CCK-8 cell proliferation assay, flow cytometry analysis and transwell assays were used to evaluate cell proliferation, migration and invasion. Results: The expression of ZXF2 was 2 fold or higher in 27 out of 40 (67.5%) cases of lung adenocarcinoma specimens than that in non-cancerous tissues (P<0.05). The relative expression level of ZXF2 was positively correlated with tumor lymph node metastasis (χ2=8.485, P<0.05) and poor prognosis of the patients (p=0.0217). In order to explore the molecular mechanisms of ZXF2 mediated tumor progression, ZXF2 expression was inhibited by siRNA in A549 cells, a highly aggressive and metastatic lung adenocarcinoma cell line. We found that siRNA-ZXF2 treatment inhibited cell proliferation (P<0.01) leading to cell cycle arrest (P<0.01). The cell migration and invasion were suppressed by siRNA-ZXF2 treatment (P<0.01). Further biochemical studies revealed that the knockdown of ZXF2 led to down regulation of c-Myc signaling. Conclusion: ZXF2 was overexpressed in lung adenocarcinoma tissues and the high expression of ZXF was closely related to tumor progression through c-Myc related pathway. Given the fact that both ZXF2 and c-Myc are located in the same chromosome 8q24.2 loci, the potential interaction between ZXF2 and c-Myc might be a novel target for treatment of lung adenocarcinoma.


2020 ◽  
Author(s):  
Yuxin Zhao ◽  
Zhaoxia Wang ◽  
Meili Gao ◽  
Xuehong Wang ◽  
Hui Feng ◽  
...  

Abstract Background: Long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was reported as an oncogene in many tumors including retinoblastoma (RB). This research mainly focused on the functions and mechanism of MALAT1 in RB.Methods: The levels of MALAT1, microRNA-655-3p (miR-655-3p), and ATPase family AAA domain containing 2 (ATAD2) in RB tissues and cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability and apoptotic rate were monitored via cell counting kit 8 (CCK8) assay and flow cytometry, respectively. The protein levels of p21, CyclinD1, B-cell lymphoma-2 (Bcl-2), cleaved-casp-3, E-cadherin, Ncadherin, Vimentin, and ATAD2 were detected by Western blot assay. Transwell assay was performed to estimate the abilities of migration and invasion. The interactions between miR-655-3p and MALAT1 or ATAD2 were predicted by starBase. Dual-luciferase reporter assay was constructed to verify these interactions. The mice model experiments were established to validate the effects of MALAT1 in vivo.Results: MALAT1and ATAD2 were significantly increased while the level of miR-655-3p was remarkably decreased in RB tissues and cells. MALAT1 knockdown inhibited cell proliferation, metastasis, and epithelial-mesenchymal transition (EMT) but promoted apoptosis via miR-655-3p in vitro, and blocked xenograft tumor growth in vivo. MALAT1 was validated to sponge miR-655-3p and ATAD2 was verified as a candidate of miR-655-3p. MiR-655-3p overexpression inhibited cell proliferation but promoted apoptosis by targeting ATAD2. MALAT1 silencing affected cell behaviors by regulating ATAD2. MALAT1 depletion down-regulated ATAD2 expression via miR-655-3p in RB cells.Conclusion: MALAT1 positively regulated ATAD2 to accelerate cell proliferation but retard apoptosis by sponging miR-655-3p in RB cells.


Sign in / Sign up

Export Citation Format

Share Document