scholarly journals Long non-coding RNA MALAT1 regulated ATAD2 to facilitate retinoblastoma progression by sponging miR-655-3p

2020 ◽  
Author(s):  
Yuxin Zhao ◽  
Zhaoxia Wang ◽  
Meili Gao ◽  
Xuehong Wang ◽  
Hui Feng ◽  
...  

Abstract Background: Long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was reported as an oncogene in many tumors including retinoblastoma (RB). This research mainly focused on the functions and mechanism of MALAT1 in RB.Methods: The levels of MALAT1, microRNA-655-3p (miR-655-3p), and ATPase family AAA domain containing 2 (ATAD2) in RB tissues and cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability and apoptotic rate were monitored via cell counting kit 8 (CCK8) assay and flow cytometry, respectively. The protein levels of p21, CyclinD1, B-cell lymphoma-2 (Bcl-2), cleaved-casp-3, E-cadherin, Ncadherin, Vimentin, and ATAD2 were detected by Western blot assay. Transwell assay was performed to estimate the abilities of migration and invasion. The interactions between miR-655-3p and MALAT1 or ATAD2 were predicted by starBase. Dual-luciferase reporter assay was constructed to verify these interactions. The mice model experiments were established to validate the effects of MALAT1 in vivo.Results: MALAT1and ATAD2 were significantly increased while the level of miR-655-3p was remarkably decreased in RB tissues and cells. MALAT1 knockdown inhibited cell proliferation, metastasis, and epithelial-mesenchymal transition (EMT) but promoted apoptosis via miR-655-3p in vitro, and blocked xenograft tumor growth in vivo. MALAT1 was validated to sponge miR-655-3p and ATAD2 was verified as a candidate of miR-655-3p. MiR-655-3p overexpression inhibited cell proliferation but promoted apoptosis by targeting ATAD2. MALAT1 silencing affected cell behaviors by regulating ATAD2. MALAT1 depletion down-regulated ATAD2 expression via miR-655-3p in RB cells.Conclusion: MALAT1 positively regulated ATAD2 to accelerate cell proliferation but retard apoptosis by sponging miR-655-3p in RB cells.

Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 921-931
Author(s):  
Juan Zhao ◽  
Xue-Bin Zeng ◽  
Hong-Yan Zhang ◽  
Jie-Wei Xiang ◽  
Yu-Song Liu

AbstractLong non-coding RNA forkhead box D2 adjacent opposite strand RNA 1 (FOXD2-AS1) has emerged as a potential oncogene in several tumors. However, its biological function and potential regulatory mechanism in glioma have not been fully investigated to date. In the present study, RT-qPCR was conducted to detect the levels of FOXD2-AS1 and microRNA (miR)-506-5p, and western blot assays were performed to measure the expression of CDK2, cyclinE1, P21, matrix metalloproteinase (MMP)7, MMP9, N-cadherin, E-cadherin and vimentin in glioma cells. A luciferase reporter assay was performed to verify the direct targeting of miR-506-5p by FOXD2-AS1. Subsequently, cell viability was analyzed using the CCK-8 assay. Cell migration and invasion were analyzed using Transwell and wound healing assays, respectively. The results demonstrated that FOXD2-AS1 was significantly overexpressed in glioma cells, particularly in U251 cells. Knockdown of FOXD2-AS1 in glioma cells significantly inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) and regulated the expression of CDK2, cyclinE1, P21, MMP7 and MMP9. Next, a possible mechanism for these results was explored, and it was observed that FOXD2-AS1 binds to and negatively regulates miR-506-5p, which is known to be a tumor-suppressor gene in certain human cancer types. Furthermore, overexpression of miR-506-5p significantly inhibited cell proliferation, migration, invasion and EMT, and these effects could be reversed by transfecting FOXD2-AS1 into the cells. In conclusion, our data suggested that FOXD2-AS1 contributed to glioma proliferation, metastasis and EMT via competitively binding to miR-506-5p. FOXD2-AS1 may be a promising target for therapy in patients with glioma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xianghai Meng ◽  
Zhenjun Zhang ◽  
Lin Chen ◽  
Xi Wang ◽  
Qingguo Zhang ◽  
...  

ObjectivesOsteosarcoma (OS) is a type of bone malignancy. This study attempted to explore the effect of long non-coding RNA TTN-AS1 (TTN-AS1) on OS and to determine its molecular mechanisms.MethodsThe expression of TTN-AS1, microRNA-16-1-3p (miR-16-1-3p), and transcription factor activating enhancer binding protein 4 (TFAP4) in OS was assessed using qRT-PCR. The OS cell proliferation, migration, and invasion were measured using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound-healing, and transwell assays. N-cadherin and MMP-2 protein level was determined with western blot. Interactions between TTN-AS1 and miR-16-1-3p or TFAP4 and miR-16-1-3p were confirmed using the dual-luciferase reporter assay. Additionally, an OS xenograft tumor model was constructed to assess the effect of TTN-AS1 on tumor growth.ResultsTTN-AS1 and TFAP4 expression was increased in OS, while miR-16-1-3p expression was decreased. TTN-AS1 silencing restrained OS cell proliferation, migration, invasion, N-cadherin and MMP-2 protein expression, and hindered tumor growth. MiR-16-1-3p overexpression retarded the malignant behavior of OS cells. TTN-AS1 played a carcinostatic role by down-regulating miR-16-1-3p in the OS cells. Moreover, miR-16-1-3p inhibition or TFAP4 elevation weakened the suppressive effect of TTN-AS1 silencing on OS cell tumor progression.ConclusionTTN-AS1 promoted the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of OS cells via mediating the miR-16-1-3p/TFAP4 axis. TTN-AS1 may be a critical target for improving OS.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 104-116
Author(s):  
Xiaobo Chen ◽  
Hongwen Sun ◽  
Yunping Zhao ◽  
Jing Zhang ◽  
Guosheng Xiong ◽  
...  

AbstractBackgroundThe aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial–mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC.MethodsThe protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay.ResultsWe discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities.ConclusionCirc_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1061-1071
Author(s):  
Shukun Gai ◽  
Li Sun ◽  
Huiying Wang ◽  
Ping Yang

AbstractBackgroundMounting evidence has revealed that abnormal expression of circular RNAs play pivotal roles in many human diseases including preeclampsia (PE). While human sapiens circular RNA 0007121 (hsa_circ_0007121) has been verified to be downregulated in human placental tissues, the underlying mechanisms were still unclear. This research aims to investigate the effect and underlying mechanisms of hsa_circ_0007121 in preeclampsia.MethodsThe expression of hsa_circ_0007121, microRNA (miR)-182-5p, and placental growth factor (PGF) was assessed by quantitative reverse transcription polymerase chain reaction in PE placentas relative to the expression in normal pregnancy placentas. After transfection, cell counting kit-8 assay was employed to detect cell proliferation. Cell migration and invasion were tested by the transwell assay. The relative level of epithelial–mesenchymal transition (EMT)-related proteins in HTR-8/SVneo cells and PGF in placentas samples were measured by western blot. The relationship between miR-182-5p and hsa_circ_0007121 or PGF was predicated by circular RNA interactome or ENCORI and verified by dual-luciferase reporter assay and RNA immunoprecipitation assay.ResultsThe levels of hsa_circ_0007121 and PGF were significantly declined in PE placental tissues and HTR-8/SVneo cells, whereas miR-182-5p had an opposite result. Downregulation of hsa_circ_0007121 obviously inhibited HTR-8/SVneo cell proliferation, migration, invasion, and EMT, while upregulation of hsa_circ_0007121 promoted this process. Besides, miR-182-5p was a target gene of hsa_circ_0007121 and could target PGF. Further analysis indicated that hsa_circ_0007121 regulated the proliferation, migration, invasion, and EMT of HTR-8/SVneo cells via altering PGF expression by interacting with miR-182-5p.ConclusionHsa_circ_0007121 mediated the progression of PE via miR-182-5p/PGF axis.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Weiwei Liu ◽  
Dongmei Yao ◽  
Bo Huang

Abstract Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Yingzi Zhang ◽  
Jiao Tian ◽  
Chi Qu ◽  
Yang Peng ◽  
Jinwei Lei ◽  
...  

Abstract Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC.


2018 ◽  
Vol 49 (4) ◽  
pp. 1403-1419 ◽  
Author(s):  
Yunxiuxiu Xu ◽  
Xinxi Luo ◽  
Wenguang He ◽  
Guangcheng Chen ◽  
Yanshan Li ◽  
...  

Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC.


2018 ◽  
Vol 48 (5) ◽  
pp. 1928-1941 ◽  
Author(s):  
Chuan He ◽  
Zhigang Liu ◽  
Li Jin ◽  
Fang Zhang ◽  
Xinhao Peng ◽  
...  

Background/Aims: MicroRNA-142-3p (miR-142-3p) is dysregulated in many malignancies and may function as a tumor suppressor or oncogene in tumorigenesis and tumor development. However, few studies have investigated the clinical significance and biological function of miR-142-3p in hepatocellular carcinoma (HCC). Methods: The expression levels of taurine upregulated gene 1 (TUG1), miR-142-3p, and zinc finger E-box-binding homeobox 1 (ZEB1) were evaluated in HCC tissues and cell lines by quantitative real-time PCR. MTT and colony formation assays were used to detect cell proliferation ability, transwell assays were used to assess cell migration and invasion, and luciferase reporter assays were used to examine the interaction between the long noncoding RNA TUG1 and miR-142-3p. Tumor formation was evaluated through in vivo experiments. Results: miR-142-3p was significantly downregulated in HCC tissues, but TUG1 was upregulated in HCC tissues. Knockdown of TUG1 and upregulation of miR-142-3p inhibited cell proliferation, cell migration, cell invasion, and the epithelial-mesenchymal transition (EMT). miR-142-3p was found to be a prognostic factor of HCC, and the mechanism by which TUG1 upregulated ZEB1 was via direct binding to miR-142-3p. In vivo assays showed that TUG1 knockdown suppressed cell proliferation and the EMT in nude mice. Conclusion: The results of this study suggest that the TUG1/miR-142-3p/ ZEB1 axis contributes to the formation of malignant behaviors in HCC.


2018 ◽  
Vol 48 (2) ◽  
pp. 838-846 ◽  
Author(s):  
Yuan He ◽  
Hao Hu ◽  
Yandong Wang ◽  
Hao Yuan ◽  
Zipeng Lu ◽  
...  

Background/Aims: Mounting evidence suggests that epitranscriptional modifications regulate multiple cellular processes. N6-Methyladenosine (m6A), the most abundant reversible methylation of mRNA, has critical roles in cancer pathogenesis. However, the mechanisms and functions of long non-coding RNA (lncRNA) methylation remain unclear. Pancreatic cancer resulted in 411,600 deaths globally in 2015. By the time of pancreatic cancer diagnosis, metastasis has often occurred in other parts of the body. The present study sought to investigate lncRNA m6A modification and its roles in pancreatic cancer. Methods: Differential expression between cancer cells and matched normal cells was evaluated to identify candidate lncRNAs. The lncRNA KCNK15-AS1 was detected in cancer tissues and various pancreatic cells using RT-qPCR. KCNK15-AS1 was transfected into cells to explore its role in migration and invasion. Then, m6A RNA immunoprecipitation was performed to detect methylated KCNK15-AS1 in tissues and cells. Epithelial–mesenchymal transition (EMT) markers were used to evaluate KCNK15-AS1-mediated EMT processes. Results: KCNK15-AS1 was downregulated in pancreatic cancer tissues compared with paired adjacent normal tissues. KCNK15-AS1 inhibited migration and invasion in MIA PaCa-2 and BxPC-3 cells. Furthermore, total RNA methylation in cancer cells was significantly enriched relative to that in immortalized human pancreatic duct epithelial (HPDE6-C7) cells. In addition, the m6A eraser ALKBH5 was downregulated in cancer cells, which can demethylate KCNK15-AS1 and regulate KCNK15-AS1-mediated cell motility. Conclusion: Our results have revealed a novel mechanism by which ALKBH5 inhibits pancreatic cancer motility by demethylating lncRNA KCNK15-AS1, identifying a potential therapeutic target for pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document