scholarly journals Constructe a novel 5 hypoxia genes signature for cervical cancer

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yang Yang ◽  
Yaling Li ◽  
Ruiqun Qi ◽  
Lan Zhang

Abstract Background Hypoxia, which affects the development, metastasis and prognosis of cancer, represents a key feature of cancer. This study describe a hypoxia risk factor model, with predicting the prognosis of cervical cancer. Methods Based on hypoxia pathway related genes, we divided cervical cancer samples into high and low expression groups. A cox analysis was then performed. Genes from these cervical cancer samples showing a significant impact on OS were selected for cluster analysis to obtain two subtypes. The TPM dataset of TCGA was divided into training and validation sets. For the training set, a lasso analysis was conducted as based on cox analysis of meaningful genes and a risk factor model was constructed. The constructed model was verified in internal and external data sets. Finally, RT-PCR, immunohistochemistry were used to detect the expression of relative genes or proteins and functional assays were used to evaluate the biological function of signature genes. Results Two molecular subtypes were obtained, Cluster2 vs Cluster1.These subtypes were obtained by clustering with a total of 149 DEGs (Differential expressed genes) being in line with this standard, of which 27 were up-regulated and 122 were down-regulated. The five genes with lambda = 0.0571 were selected to construct the model, the RiskScore = AK4*0.042 + HK2*0.021 + P4HA1*0.22 + TGFBI*0.1 + VEGFA*0.077. Further, in order to verify the signature, we used TCGA-test and GSE44001 chip datasets to test, and finally got a good risk prediction effect in those datasets. Moreover, the result of RT-PCR and immunohistochemistry demonstrated that AK4, HK2, P4HA1, TGFBI and VEGFA were all highly expressed in these cervical cancer tissue samples. The functional study shown that expression of AK4, HK2, P4HA1, TGFBI and VEGFA can regulate the proliferation, migration, and invasion ability of cervical cancer cells in vitro. Conclusions In summary, we developed a 5-gene signature prognostic hierarchical system based on the hypoxic pathway of cervical cancer, which is independent of clinical characteristics. And also conducted experimental verifications on these signature gene. Therefore, we propose that use of this classifier as a molecular diagnostic test can provide an effective means for evaluating the prognostic risk of cervical cancer patients, and provide potential targets for the treatment of cervical cancer patients.

Author(s):  
Suna Zhou ◽  
Xuequan Wang ◽  
Jiapei Ding ◽  
Haihua Yang ◽  
Youyou Xie

Cervical cancer has the second-highest incidence and mortality of female malignancy. The major causes of mortality in patients with cervical cancer are invasion and metastasis. The epithelial–mesenchymal transition (EMT) process plays a major role in the acquisition of metastatic potential and motility. Autophagy-related genes (ARGs) are implicated in the EMT process, and autophagy exerts a dual function in EMT management at different phases of tumor progression. However, the role of specific ARGs during the EMT process has not yet been reported in cervical cancer. Based on the data from the Cancer Genome Atlas (TCGA) cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) sequencing database, we performed the prognosis analysis for those ARGs obtained from the Human Autophagy database. ATG5 was identified as the only important harmful marker influencing survival of cervical cancer patients by univariate Cox regression (HR 1.7; 95% CI: 1.0–2.8, p = 0.047), and the 5-years survival rate for the high- and low-ATG5 expression groups was 0.486 (0.375–0.631) and 0.782 (0.708–0.863), respectively. TCGA CESC methylation data showed that eight methylation sites of ATG5 could also be significantly associated with the overall survival (OS) of cervical cancer patients. Single-sample gene-set enrichment and gene functional enrichment results showed that ATG5 was correlated with some cancer-related pathways, such as phagocytosis-related genes, endocytosis-related genes, immune-related genes, EMT score, and some EMT signature-related genes. Next, cell migration and invasion assay and Western blot were applied to detect the function of ATG5 in EMT of cervical cancer. In cervical cancer cells, ATG5 knockdown resulted in attenuation of migration and invasion. The functional study showed that knockdown of ATG5 could reverse EMT process by P-ERK, P-NFκBp65, P-mTOR pathways, and so on. In conclusion, the present study implies that ATG5 was a major contributor to EMT regulation and poor prognosis in cervical cancer.


2014 ◽  
Vol 14 (2) ◽  
pp. 112-132 ◽  
Author(s):  
Lindsay A. Bornheimer ◽  
Duy Nguyen

2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Chun-Ling Yu ◽  
Xiao-Ling Xu ◽  
Fang Yuan

Abstract LINC00511 is a newly identified lncRNA that is up-regulated in many types of human cancers and may serve as an oncogenic lncRNA. However, there was no report about the role of LINC00511 in cervical cancer. Therefore, we investigated the clinical value of LINC00511 in cervical cancer patients via analyzing the correlation between LINC00511 expression and clinicopathological features. Moreover, we performed loss-of-function study to estimate the effect of LINC00511 on cervical cancer cell proliferation, migration, and invasion. In our study, we found LINC00511 expression levels were increased in cervical cancer tissues and cell lines compared with adjacent normal tissues and normal cervical epithelial cell line, respectively. High LINC00511 expression was correlated with advanced clinical stage, large tumor size, histological type of adenocarcinoma, and present lymph node metastasis, distant metastasis, and poor overall survival in cervical cancer patients. The in vitro studies indicated that knockdown of LINC00511 inhibited cervical cancer cell proliferation, migration, and invasion. In conclusion, LINC00511 acts as oncogenic lncRNA in cervical cancer, and may be a novel biomarker and potential therapeutic target for cervical cancer patients.


2018 ◽  
Vol 29 (9) ◽  
pp. 915-921 ◽  
Author(s):  
Maria Paula L. Coltro ◽  
Ahmet Ozkomur ◽  
Eduardo A. Villarinho ◽  
Eduardo R. Teixeira ◽  
Alvaro Vigo ◽  
...  

2017 ◽  
Vol 8 (3) ◽  
pp. 51 ◽  
Author(s):  
Darrol J. Stanley ◽  
Levan Efremidze ◽  
Jannie Rossouw

We investigate the predictability of an exchange rate with entropy risk factor model, as there is growing evidence that financial markets behave as complex systems. The model is tested on the data of South African Rand (ZAR) exchange rate for the period of 2004-2015. We calculate sample entropy based on the daily data of the exchange rate and conduct empirical implementation of several market timing rules based on these entropy signals. The dynamic investment portfolio based on entropy signals produces better risk adjusted performance than a buy and hold strategy. The returns are estimated on the portfolio values in U.S. dollars. The results raise the potential attractiveness of complex systems analyses, especially the methods of entropy, for foreign exchange market research and applications.


Sign in / Sign up

Export Citation Format

Share Document