scholarly journals Attenuated expression of SNF5 facilitates progression of bladder cancer via STAT3 activation

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hua Ding ◽  
Yaqin Huang ◽  
Jiazhong Shi ◽  
Liwei Wang ◽  
Sha Liu ◽  
...  

Abstract Background SWI/SNF, a well-known ATP-dependent chromatin-remodeling complex, plays an essential role in several biological processes. SNF5, the core subunit of the SWI/SNF remodeling complex, inactivated in 95% of malignant rhabdoid tumors (MRT), highlighting its significance in tumorigenesis. However, the role of SNF5 in bladder cancer (BC) remains unknown. In this study, we aimed to investigate the function and potential clinical applicability of SNF5 in BC. Methods Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Cancer Cell Line Encyclopedia (CCLE) databases were used to evaluate the clinical significance of SNF5 in BC. We performed Gene Set Enrichment Analysis (GSEA) and functional assays to investigate the role of SNF5 in BC. Genomics of Drug Sensitivity in Cancer (GDSC) and drug-susceptibility tests were performed to identify the potential value of SNF5 in the treatment of BC. Results Low SNF5 expression conferred a poor prognosis and was significantly associated with the N-stage in BC. ROC curves indicated that SNF5 could distinguish BC from the normal tissues. In vitro and in vivo functional assays demonstrated that attenuated SNF5 expression could promote cell proliferation and enhance migration by STAT3 activation. We imputed that low SNF5 expression could confer greater resistance against conventional first-line drugs, including cisplatin and gemcitabine in BC. GDSC and drug-resistance assays suggested that low SNF5 expression renders T24 and 5637 cells high sensitivity to EGFR inhibitor gefitinib, and combination of EZH2 inhibitor GSK126 and cisplatin. Conclusions To the best of our knowledge, the present study, for the first time, showed that low SNF5 expression could promote cell proliferation and migration by activating STAT3 and confer poor prognosis in BC. Importantly, SNF5 expression may be a promising candidate for identifying BC patients who could benefit from EGFR-targeted chemotherapy or cisplatin in combination with EZH2 inhibitor treatment regimens.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xinchao Deng ◽  
Congzhe Hou ◽  
Zhen Liang ◽  
Huali Wang ◽  
Lin Zhu ◽  
...  

Background. MicroRNA-202 (miR-202) has been reported to be aberrantly regulated in several cancers. The aim of this study is to explore the functional role of miR-202 in EAC tumor growth. Material and Methods. miR-202 expression was detected by qRT-PCR. TargetScan and luciferase reporter assay were used to elucidate the candidate target gene of miR-202. The FOXR2 protein level was assessed by Western blot and immunohistochemistry. Survival analysis was explored for FOXR2 expression in EAC patients. Results. miR-202 expression was significantly decreased in EAC tissues (P<0.01) compared with that in control tissues. And the downregulate miR-202 was significantly associated with poor prognosis (P<0.01). Re-expression of miR-202 dramatically suppressed cell proliferation in vitro and tumor growth in vivo. FOXR2 was identified as a direct target of miR-202. In EAC tissues, FOXR2 was upregulated and the increased FOXR2 was significantly associated with poor prognosis. In miR-202-transfected cells, the FOXR2 expression was inversely changed. The analysis of FOXR2 protein expression and miR-202 transcription in EAC tissues showed negative correlation (R=−0.429). Conclusion. miR-202 may function as a tumor suppressor in EAC tumor growth by targeting FOXR2 oncogene, which may provide new insights into the molecular mechanism and new targets for treatment of EAC.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Cui-Cui Zhao ◽  
Jing Chen ◽  
Li-Ying Zhang ◽  
Hong Liu ◽  
Chuan-Gui Zhang ◽  
...  

Abstract Triple negative breast cancer (TNBC) is a more common type of breast cancer with high distant metastasis and poor prognosis. The potential role of lamins in cancer progression has been widely revealed. However, the function of lamin B2 (LMNB2) in TNBC progression is still unclear. The present study aimed to investigate the role of LMNB2 in TNBC. The cancer genome atlas (TCGA) database analysis and immunohistochemistry (IHC) were performed to examine LMNB2 expression levels. LMNB2 short hairpin RNA plasmid or lentivirus was used to deplete the expression of LMNB2 in human TNBC cell lines including MDA-MB-468 and MDA-MB-231. Alterations in cell proliferation and apoptosis in vitro and the nude mouse tumorigenicity assay in vivo were subsequently analyzed. The human TNBC tissues shown high expression of LMNB2 according to the bioinformation analysis and IHC assays. LMNB2 expression was correlated with the clinical pathological features of TNBC patients, including pTNM stage and lymph node metastasis. Through in vitro and in vivo assays, we confirmed LMNB2 depletion suppressed the proliferation and induced the apoptosis of TNBC cells, and inhibited tumor growth of TNBC cells in mice, with the decrease in Ki67 expression or the increase in caspase-3 expression. In conclusion, LMNB2 may promote TNBC progression and could serve as a potential therapeutic target for TNBC treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Zhang ◽  
Qian Yang

SHMT2 was overexpressed in many tumors, however, the role of SHMT2 in bladder cancer (BLCA) remains unclear. We first analyzed the expression pattern of SHMT2 in BLCA using the TNMplot, Oncomine, the Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) databases. Next, the association between SHMT2 expression and overall survival (OS)/disease-free survival (DFS) in BLCA patients were analyzed using TCGA and PrognoScan database. The correlation between SHMT2 expression and clinicopathology was determined using TCGA database. Furthermore, the genes co-expressed with SHMT2 and their underlying molecular function in BLCA were explored based on the Oncomine database, Metascape and gene set enrichment analysis (GSEA). Finally, the effects of SHMT2 on cell proliferation, cell cycle, and apoptosis were assessed using in vitro experiments. As a results, SHMT2 was significantly overexpressed in BLCA tissues and cells compared to normal bladder tissues and cells. A high SHMT2 expression predicts a poor OS of BLCA patients. In addition, SHMT2 expression was higher in patients with a high tumor grade and in those who were older than 60 years. However, the expression of SHMT2 was not correlated with gender, tumor stage, lymph node stage, and distant metastasis stage. Finally, overexpression of SHMT2 promoted BLCA cell proliferation and suppressed apoptosis, the silencing of SHMT2 significantly inhibited BLCA cell proliferation by impairing the cell cycle, and promoting apoptosis. SHMT2 mediates BLCA cells growth by regulating STAT3 signaling. In summary, SHMT2 regulates the proliferation, cell cycle and apoptosis of BLCA cells, and may act as a candidate therapeutic target for BLCA.


2020 ◽  
Author(s):  
Hui-er Zhu ◽  
Tao Li ◽  
Shengnan Shi ◽  
De-xiong Chen ◽  
Weiping Chen ◽  
...  

Abstract Background: Emerging evidence indicates that metabolism reprogramming and abnormal acetylation modification play an important role in lung adenocarcinoma (LUAD) progression, although the mechanism is largely unknown. Methods: Here, we used three public databases (Oncomine, Gene Expression Omnibus [GEO], The Cancer Genome Atlas [TCGA]) to analyze ESCO2 (establishment of cohesion 1 homolog 2) expression in LUAD. The biological function of ESCO2 was studied using cell proliferation, colony formation, cell migration, and invasion assays in vitro, and mouse xenograft models in vivo. ESCO2 interacting proteins were searched using gene set enrichment analysis (GSEA) and mass spectrometry. Pyruvate kinase M1/2 (PKM) mRNA splicing assay was performed using RT-PCR together with restriction digestion. LUAD cell metabolism was studied using glucose uptake assays and lactate production. ESCO2 expression was significantly upregulated in LUAD tissues, and higher ESCO2 expression indicated worse prognosis for patients with LUAD. Results: We found that ESCO2 promoted LUAD cell proliferation and metastasis metabolic reprogramming in vitro and in vivo. Mechanistically, ESCO2 increased hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1) binding to the intronic sequences flanking exon 9 (EI9) of PKM mRNA by inhibiting hnRNPA1 nuclear translocation, eventually inhibiting PKM1 isoform formation and inducing PKM2 isoform formation. Conclusions: Our findings confirm that ESCO2 is a key factor in promoting LUAD malignant progression and suggest that it is a new target for treating LUAD.


Author(s):  
Hui-er Zhu ◽  
Tao Li ◽  
Shengnan Shi ◽  
De-xiong Chen ◽  
Weiping Chen ◽  
...  

Abstract Background Emerging evidence indicates that metabolism reprogramming and abnormal acetylation modification play an important role in lung adenocarcinoma (LUAD) progression, although the mechanism is largely unknown. Methods Here, we used three public databases (Oncomine, Gene Expression Omnibus [GEO], The Cancer Genome Atlas [TCGA]) to analyze ESCO2 (establishment of cohesion 1 homolog 2) expression in LUAD. The biological function of ESCO2 was studiedusing cell proliferation, colony formation, cell migration, and invasion assays in vitro, and mouse xenograft models in vivo. ESCO2 interacting proteins were searched using gene set enrichment analysis (GSEA) and mass spectrometry. Pyruvate kinase M1/2 (PKM) mRNA splicing assay was performed using RT-PCR together with restriction digestion. LUAD cell metabolism was studied using glucose uptake assays and lactate production. ESCO2 expression was significantly upregulated in LUAD tissues, and higher ESCO2 expression indicated worse prognosis for patients with LUAD. Results We found that ESCO2 promoted LUAD cell proliferation and metastasis metabolic reprogramming in vitro and in vivo. Mechanistically, ESCO2 increased hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1) binding to the intronic sequences flanking exon 9 (EI9) of PKM mRNA by inhibiting hnRNPA1 nuclear translocation, eventually inhibiting PKM1 isoform formation and inducing PKM2 isoform formation. Conclusions Our findings confirm that ESCO2 is a key factor in promoting LUAD malignant progression and suggest that it is a new target for treating LUAD.


2021 ◽  
Author(s):  
Hui-er Zhu ◽  
Tao Li ◽  
Shengnan Shi ◽  
De-xiong Chen ◽  
Weiping Chen ◽  
...  

Abstract Background: Emerging evidence indicates that metabolism reprogramming and abnormal acetylation modification play an important role in lung adenocarcinoma (LUAD) progression, although the mechanism is largely unknown. Methods: Here, we used three public databases (Oncomine, Gene Expression Omnibus [GEO], The Cancer Genome Atlas [TCGA]) to analyze ESCO2 (establishment of cohesion 1 homolog 2) expression in LUAD. The biological function of ESCO2 was studiedusing cell proliferation, colony formation, cell migration, and invasion assays in vitro, and mouse xenograft models in vivo. ESCO2 interacting proteins were searched using gene set enrichment analysis (GSEA) and mass spectrometry. Pyruvate kinase M1/2 (PKM) mRNA splicing assay was performed using RT-PCR together with restriction digestion. LUAD cell metabolism was studied using glucose uptake assays and lactate production. ESCO2 expression was significantly upregulated in LUAD tissues, and higher ESCO2 expression indicated worse prognosis for patients with LUAD. Results: We found that ESCO2 promoted LUAD cell proliferation and metastasis metabolic reprogramming in vitro and in vivo. Mechanistically, ESCO2 increased hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1) binding to the intronic sequences flanking exon 9 (EI9) of PKM mRNA by inhibiting hnRNPA1 nuclear translocation, eventually inhibiting PKM1 isoform formation and inducing PKM2 isoform formation. Conclusions: Our findings confirm that ESCO2 is a key factor in promoting LUAD malignant progression and suggest that it is a new target for treating LUAD.


2020 ◽  
Author(s):  
Na Li ◽  
Jin-hai Gou ◽  
Jiao Xiong ◽  
Juan-juan You ◽  
Zhengyu Li

Abstract Background : Homeobox B4 (HOXB4) is correlated with poor prognosis of various cancer types. However, how HOXB4 promotes ovarian cancer (OV) progression remains unclear. Methods : The Cancer Genome Atlas (TCGA) database indicated that a high level of HOXB4 in OV was correlated with poor prognosis. The biological functions of HOXB4 were confirmed by colony formation, migration, and invasion assays. The effect of HOXB4 on the expression of EMT cell markers was determined. The transcriptional target of HOXB4 was DHDDS, which was detected by a ChIP assay. A xenograft tumor model was generated in nude mice to detect the role of HOXB4 in tumor proliferation and metastasis. Results : The results showed that HOXB4 protein levels were higher in OV tissues than in normal tissues and correlated with poor prognosis of OV. HOXB4 reduction inhibited the proliferation and invasion ability of OV cells in vitro. Conversely, these effects were enhanced by the upregulation of HOXB4 in OV cells. The binding of HOXB4 to two DNA motifs regulated DHDDS expression and contributed to the malignant progression of OV. The role of HOXB4 in contributing to tumor development in vivo was verified in mice. Further results indicated that HOXB4 induced Snail and Zeb1 expression. Conclusion : Overall, HOXB4 overexpression was remarkably correlated with poor prognosis of OV. Mechanistically, HOXB4 enhances the proliferation and invasion of tumor cells by activating DHDDS, thereby promoting the malignant progression of OV.


2020 ◽  
Author(s):  
Na Li ◽  
Jiao Xiong ◽  
Zhengyu Li

Abstract Background : Homeobox B4 (HOXB4) is correlated with poor prognosis of various cancer types. However, how HOXB4 promotes ovarian cancer (OV) progression remains unclear. Methods : The Cancer Genome Atlas (TCGA) database indicated that a high level of HOXB4 in OV was correlated with poor prognosis. The biological functions of HOXB4 were confirmed by colony formation, migration, and invasion assays. The effect of HOXB4 on the expression of EMT cell markers was determined. The transcriptional target of HOXB4 was DHDDS, which was detected by a ChIP assay. A xenograft tumor model was generated in nude mice to detect the role of HOXB4 in tumor proliferation and metastasis. Results : The results showed that HOXB4 protein levels were higher in OV tissues than in normal tissues and correlated with poor prognosis of OV. HOXB4 reduction inhibited the proliferation and invasion ability of OV cells in vitro. Conversely, these effects were enhanced by the upregulation of HOXB4 in OV cells. The binding of HOXB4 to two DNA motifs regulated DHDDS expression and contributed to the malignant progression of OV. The role of HOXB4 in contributing to tumor development in vivo was verified in mice. Further results indicated that HOXB4 induced Snail and Zeb1 expression. Conclusion : Overall, HOXB4 overexpression was remarkably correlated with poor prognosis of OV. Mechanistically, HOXB4 enhances the proliferation and invasion of tumor cells by activating DHDDS, thereby promoting the malignant progression of OV.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


Sign in / Sign up

Export Citation Format

Share Document