scholarly journals Polysaccharide CM1 from Cordyceps militaris hinders adipocyte differentiation and alleviates hyperlipidemia in LDLR(+/−) hamsters

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Wen-Qian Yu ◽  
Fan Yin ◽  
Nuo Shen ◽  
Ping Lin ◽  
Bin Xia ◽  
...  

Abstract Background Cordyceps militaris is cultured widely as an edible mushroom and accumulating evidence in mice have demonstrated that the polysaccharides of Cordyceps species have lipid-lowering effects. However, lipid metabolism in mice is significantly different from that in humans, making a full understanding of the mechanisms at play critical. Methods After 5 months, the hamsters were weighed and sampled under anesthesia after overnight fasting. The lipid-lowering effect and mechanisms of the polysaccharide CM1 was investigated by cellular and molecular technologies. Furthermore, the effect of the polysaccharide CM1 (100 μg/mL) on inhibiting adipocyte differentiation was investigated in vitro. Results CM1, a polysaccharide from C. militaris, significantly decreased plasma total cholesterol, triglyceride and epididymal fat index in LDLR(+/−) hamsters, which have a human-like lipid profile. After 5 months’ administration, CM1 decreased the plasma level of apolipoprotein B48, modulated the expression of key genes and proteins in liver, small intestine, and epididymal fat. CM1 also inhibited preadipocyte differentiation in 3T3-L1 cells by downregulating the key genes involved in lipid droplet formation. Conclusions The polysaccharide CM1 lowers lipid and adipocyte differentiation by several pathways, and it has potential applications for hyperlipidemia prevention.

2019 ◽  
Author(s):  
Amna Khamis ◽  
Raphael Boutry ◽  
Mickaël Canouil ◽  
Sumi Mathew ◽  
Stephane Lobbens ◽  
...  

AbstractBackgroundAdipogenesis, the process whereby preadipocytes differentiate into mature adipocytes, is crucial for maintaining metabolic homeostasis. Cholesterol lowering statins increase type 2 diabetes (T2D) risk possibly by affecting adipogenesis and insulin resistance but the (epi)genetic mechanisms involved are unknown. Here, we characterised the effects of statin treatment on adipocyte differentiation using in vitro human preadipocytes cell model to identify putative effective genes.ResultsStatin treatment during adipocyte differentiation caused a reduction in key genes involved in adipogenesis, such as ADIPOQ, GLUT4 and ABCG1. Using Illumina’s Infinium ‘850K’ Methylation EPIC array, we found a significant hypomethylation of cg14566882, located in the promoter of the histone deacetylase 9 (HDAC9) gene, in response to two types of statins (atorvastatin and mevastatin), which correlates with an increased HDAC9 mRNA expression. HDAC9 is a transcriptional repressor of the cholesterol efflux ABCG1 gene expression, which is epigenetically modified in obesity and prediabetic states. Thus, we assessed the putative impact of ABCG1 knockdown in mimicking the effect of statin in adipogenesis. ABCG1 KD reduced the expression of key genes involved in adipocyte differentiation and decreased insulin signalling and glucose uptake. In human blood cells from two cohorts, ABCG1 expression was impaired in response to statins, confirming that ABCG1 is in vivo targeted by these drugs.ConclusionsWe identified an epigenetic link between adipogenesis and adipose tissue insulin resistance in the context of T2D risk associated with statin use, which has important implications as HDAC9 and ABCG1 are considered potential therapeutic targets for obesity and metabolic diseases.


1966 ◽  
Vol 51 (1) ◽  
pp. 88-94 ◽  
Author(s):  
A. Villanueva ◽  
S. J. H. Ashcroft ◽  
J. P. Felber

ABSTRACT The synthetic ACTH peptides β1–39 and β1–24 stimulated lipolysis as determined by the rat epididymal fat pad in vitro. The stimulating effect of these peptides was diminished by prior incubation of the peptides with antibodies produced by the guinea-pig against ACTH. The stimulating effect of these hormones was also diminished by the double antibody system used in the radio-immunoassay of ACTH and other peptide hormones, in which incubation with antiserum is followed by precipitation of the antigen-antibody complex by rabbit anti-guinea-pig-γ-globulin.


2020 ◽  
Vol 26 (39) ◽  
pp. 4970-4981
Author(s):  
Yu-Tang Tung ◽  
Chun-Hsu Pan ◽  
Yi-Wen Chien ◽  
Hui-Yu Huang

Metabolic syndrome is an aggregation of conditions and associated with an increased risk of developing diabetes, obesity and cardiovascular diseases (CVD). Edible mushrooms are widely consumed in many countries and are valuable components of the diet because of their attractive taste, aroma, and nutritional value. Medicinal mushrooms are higher fungi with additional nutraceutical attributes having low-fat content and a transisomer of unsaturated fatty acids along with high fiber content, biologically active compounds such as polysaccharides or polysaccharide β-glucans, alkaloids, steroids, polyphenols and terpenoids. In vitro experiments, animal models, and even human studies have demonstrated not only fresh edible mushroom but also mushroom extract that has great therapeutic applications in human health as they possess many properties such as antiobesity, cardioprotective and anti-diabetic effect. They are considered as the unmatched source of healthy foods and drugs. The focus of this report was to provide a concise and complete review of the novel medicinal properties of fresh or dry mushroom and extracts, fruiting body or mycelium and its extracts, fiber, polysaccharides, beta-glucan, triterpenes, fucoidan, ergothioneine from edible mushrooms that may help to prevent or treat metabolic syndrome and associated diseases.


2019 ◽  
Vol 15 (4) ◽  
pp. 415-426
Author(s):  
Avani B. Chokshi ◽  
Mahesh T. Chhabria ◽  
Pritesh R. Desai

Background:Squalene Synthase is one of the cholesterol biosynthetic pathway enzymes, inhibition of which produces potent lipid lowering action. A variety of chemical classes have been evaluated for its inhibition to provide alternate antihyperlipidemic agents to statins.Methods:A series of N-substituted-sulfomoyl-phenyl-amino carboxylic acid derivatives were designed through pharmacophore modelling as Squalene Synthase inhibitors. We report here the synthesis, characterization and in vitro pharmacological screening of the designed molecules as Squalene synthase inhibitors. The target molecules were synthesized by a simple procedure and each molecule was characterized by IR, Mass, 1HNMR and 13CNMR spectroscopic techniques. As a primary site of action for cholesterol biosynthesis is liver, each of the molecules were first screened for in vitro cytotoxicity over human hepatic cell line (HepG2) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method. The enzyme inhibition assay was performed on cell lysates prepared from HepG2 cells by Human Squalene Synthase ELISA kit, where test compounds were added in the nontoxic concentrations only.Results:Compound 5f was found to be most potent with the IC50 value of 11.91 µM. The CTC50 value for 5f on human hepatic cell line was > 1000 µM so it was considered that the compound was relatively safe and might be free of hepatotoxicity.Conclusion:From the results of our studies, it was observed that compounds with poly nuclear aromatic or hetero aromatic substituent on a side chain were more potent enzyme inhibitors and a distance of 4-5 atoms is optimum between amide nitrogen and hydroxyl group of carboxylic acid.


2019 ◽  
Vol 19 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Mohammed Ajebli ◽  
Fadwa El Ouady ◽  
Mohamed Eddouks

Background and Objective: Warionia saharae Benth & Coss, a plant belonging to Asteraceae family, is used for its anti-diabetic properties in Morocco. The objective of this study was to evaluate the effect of tannins extracted from Warionia saharae (W. saharae) on blood glucose levels and lipid profile in normal and streptozotocin(STZ)-induced diabetic rats. Methods: Tannins (TE) were extracted from W. saharae using Soxhlet apparatus and different organic solvents. Single and once daily repeated oral administration of TE (10 mg/kg) for 15 days were used to evaluate the glucose and lipid-lowering activity in normal and diabetic rats. Furthermore, glucose test tolerance, liver histopathological examination and in vitro antioxidant activity of TE were carried out in this study. Results: The results showed that TE was able to exert antihyperglycemic and lowering total cholesterol effects as well as improvement of the high-density lipoprotein (HDL)-cholesterol serum level after 15 days of treatment. Furthermore, TE improved glucose tolerance, histopathological status of liver in diabetic rats and demonstrated interesting antioxidant activity. Conclusion: In conclusion, the present investigation revealed that TE possesses potent antidiabetic and antihyperlipidemic activities as claimed in different ethnopharmacological practices.


2020 ◽  
Vol 6 (2) ◽  
pp. 155-169
Author(s):  
Neeraj Panihar ◽  
Neeru Vasudeva ◽  
Sunil Sharma ◽  
Babu Lal Jangir

Background: Fagopyrum esculentum Moench. is a herb consumed as food and has medicinal value. It is a rich source of bioactive nutrients which cure and prevent many ailments. Traditionally, it is used to treat hypertension, diabetes, constipation, cancer etc. Methods and Objective: Present work illustrates morphological, microscopic and physicochemical parameters of Fagopyrum esculentum seeds as per WHO guidelines, in vitro antioxidant activity; assessed by DPPH scavenging method, hydrogen peroxide scavenging assay and β-carotene linoleic acid bleaching method and study of lipid lowering potential of the ethyl acetate and ethanol extract of seeds on normal diet fed Wistar rats. Results: Morphological studies delineated the triangular shape, dark brown colour, 8 mm length and 6 mm width of the seed. The microscopic examination of the transverse section of seed depicted features like testa or pericarp (seed coat), the endosperm, embryo and sclerenchyma cells. Study of physiochemical parameters exhibited 0.3±0.02% of foreign matter and 1.44±0.51% crude fibre content. Total ash, acid insoluble ash and water soluble ash value were 6.7±1.7%, 1.9±0.23% and 3.9± 0.31% respectively. Alcohol soluble and water soluble extractive value came out to be 65.02± 3.21 mg/g and 12.7±1.24 mg/g respectively. Foaming index was less than 100, swelling index was found to be 0.5±0.01 ml/g. Loss on drying was 4.02±1.27%. Phytochemical screening of ethyl acetate and ethanol extract revealed the presence of alkaloids, carbohydrates, phenolic compounds, phytosterols and flavonoids. Trace amount of heavy metals (arsenic, cadmium, lead, mercury) were determined by atomic absorption spectrophotometer. Pesticide residue analysis confirmed the presence of nontoxic pesticides like dimethipin, hymexazol, phenothrin-2, methoprene, triadimenol, prohydrojasmon- 1, jasmolin ii, triademinol, jasmolin i, prohydrojasmone i, cyromazine in both the extracts by gc-ms spectrometer. The ethyl acetate and ethanol extract has shown significant in-vitro antioxidant activities demonstrated by the DPPH method (IC50 = 94.37±2.51 and 216.04±4.39 μg/ml respectively), hydrogen peroxide scavenging assay (IC50 = 83.72±3.72 and 193.47±5.05 µg/ml respectively) and β-carotene bleaching method (IC50 = 100.67±4.01 and 205.39±2.89 µg/ml respectively). Lipid lowering study performed on Wistar rats demonstrated a significant (p<0.001) decrease in serum Total Cholesterol (TC), Triglyceride (TG) and increase in High Density Lipoprotein (HDL) level as compared to normal group. Both the extracts have shown a non significant difference in the level of TG as compared to standard drug atorvastatin, depicting that the efficacy of extracts is at par with that of standard drug atorvastatin. Conclusion: Pharmacognostical study of the plant can be a very good tool for identification as well as authentication of a herb. Moreover, these parameters may be helpful in the development of monograph of the plant. Pharmacological activity confirmed Fagopyrum esculentum Moench. seed to be a good antioxidant and have lipid lowering potential.


1979 ◽  
Vol 44 (5) ◽  
pp. 1651-1656 ◽  
Author(s):  
Sixtus Hynie ◽  
Jiří Smrt

3'-Oleolyl-2,3-dihydroxypropyl-AMP, 3'-stearoyl-2,3-dihydroxypropyl-AMP, octadecyl-AMP and palmitamidoethyl-AMP inhibited in comparison with adenosine or fatty acids much stronger the lipolysis in rat epididymal fat pads in vitro stimulated by isoproterenol, theophylline and dibutyryl cyclic AMP. The inhibition of the effects of the two latter drugs suggest that the described effect is caused not only by the inhibition of the cyclic AMP production but also by the inhibition of its effect on the following steps in process of lipolysis.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Mukund R. Shukla ◽  
Annaliese Kibler ◽  
Christina E. Turi ◽  
Lauren A. E. Erland ◽  
J. Alan Sullivan ◽  
...  

Tulsi (Ocimum sanctum L.) is a sacred plant of medicinal and spiritual significance in many cultures. Medicinal properties of Tulsi are ascribed to its phytochemicals with antioxidant capabilities. The current study was undertaken to screen a large seed population of Tulsi to select germplasm lines with high antioxidant potential and to standardize protocols for micropropagation and biomass production to produce a phytochemically consistent crop. A total of 80 germplasm lines were established under in vitro conditions and screened for their antioxidant potential determined with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) bioassay. The micropropagation of a selected line, named Vrinda, was established using nodal cultures grown on Murashige and Skoog medium containing benzylaminopurine (1.1 µM), gibberellic acid (0.3 µM), and activated charcoal (0.6%). The antioxidant phytohormones melatonin and serotonin were quantified in the field and greenhouse grown tissues of Vrinda and melatonin levels were found to be consistent in both conditions with higher serotonin levels under field conditions. This integrated approach combining the in vitro selection and propagation offers potential applications in the development of safe, effective, and novel natural health products of Tulsi, and many other medicinal plant species.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Zhu ◽  
Hongyang Zhao ◽  
Fenfen Xu ◽  
Bin Huang ◽  
Xiaojing Dai ◽  
...  

Abstract Background Fenofibrate is a fibric acid derivative known to have a lipid-lowering effect. Although fenofibrate-induced peroxisome proliferator-activated receptor alpha (PPARα) transcription activation has been shown to play an important role in the malignant progression of gliomas, the underlying mechanisms are poorly understood. Methods In this study, we analyzed TCGA database and found that there was a significant negative correlation between the long noncoding RNA (lncRNA) HOTAIR and PPARα. Then, we explored the molecular mechanism by which lncRNA HOTAIR regulates PPARα in cell lines in vitro and in a nude mouse glioma model in vivo and explored the effect of the combined application of HOTAIR knockdown and fenofibrate treatment on glioma invasion. Results For the first time, it was shown that after knockdown of the expression of HOTAIR in gliomas, the expression of PPARα was significantly upregulated, and the invasion and proliferation ability of gliomas were obviously inhibited. Then, glioma cells were treated with both the PPARα agonist fenofibrate and si-HOTAIR, and the results showed that the proliferation and invasion of glioma cells were significantly inhibited. Conclusions Our results suggest that HOTAIR can negatively regulate the expression of PPARα and that the combination of fenofibrate and si-HOTAIR treatment can significantly inhibit the progression of gliomas. This introduces new ideas for the treatment of gliomas.


Sign in / Sign up

Export Citation Format

Share Document