scholarly journals Nucleoside transporter-guided cytarabine-conjugated liposomes for intracellular methotrexate delivery and cooperative choriocarcinoma therapy

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Weidong Fei ◽  
Yunchun Zhao ◽  
Xiaodong Wu ◽  
Dongli Sun ◽  
Yao Yao ◽  
...  

AbstractGestational trophoblastic tumors seriously endanger child productive needs and the health of women in childbearing age. Nanodrug-based therapy mediated by transporters provides a novel strategy for the treatment of trophoblastic tumors. Focusing on the overexpression of human equilibrative nucleoside transporter 1 (ENT1) on the membrane of choriocarcinoma cells (JEG-3), cytarabine (Cy, a substrate of ENT1)-grafted liposomes (Cy-Lipo) were introduced for the targeted delivery of methotrexate (Cy-Lipo@MTX) for choriocarcinoma therapy in this study. ENT1 has a high affinity for Cy-Lipo and can mediate the endocytosis of the designed nanovehicles into JEG-3 cells. The ENT1 protein maintains its transportation function through circulation and regeneration during endocytosis. Therefore, Cy-Lipo-based formulations showed high tumor accumulation and retention in biodistribution studies. More importantly, the designed DSPE-PEG2k-Cy conjugation exhibited a synergistic therapeutic effect on choriocarcinoma. Finally, Cy-Lipo@MTX exerted an extremely powerful anti-choriocarcinoma effect with fewer side effects. This study suggests that the overexpressed ENT1 on choriocarcinoma cells holds great potential as a high-efficiency target for the rational design of active targeting nanotherapeutics. Graphic abstract

2021 ◽  
Author(s):  
Weidong Fei ◽  
Yunchun Zhao ◽  
Xiaodong Wu ◽  
Dongli Sun ◽  
Yao Yao ◽  
...  

Abstract The gestational trophoblastic tumor seriously endangers child productive needs and the health of women in childbearing age. Nanodrug-based therapy mediated by transporters provides novel strategy for the treatment of trophoblastic tumors. Focus on the overexpressed human equilibrative nucleoside transporter 1 (ENT1) on the membrane of choriocarcinoma cells (JEG-3), the cytarabine (Cy, a substrate of ENT1) grafted liposome (Cy-Lipo) was introduced for targeted delivery of methotrexate (Cy-Lipo@MTX) for choriocarcinoma therapy in this study. The ENT1 has high affinity for Cy-Lipo and can mediate the endocytosis of the designed nanovehicles into JEG-3 cells. The ENT1 protein maintains its transporting function through circulation and regeneration during endocytosis. Therefore, Cy-Lipo-based formulations achieved high tumor accumulation and retention in pharmacokinetic and distribution studies. More importantly, the designed Cy-lipid conjugation exhibited a synergistic therapeutic effect on choriocarcinoma. Finally, Cy-Lipo@MTX exerts an extremely powerful anti-choriocarcinoma effect with fewer side effects. This study suggests that the overexpressed ENT1 on choriocarcinoma cells holds a great potential to be a high-efficiency target for the rational design of active targeting nanotherapeutics.


Author(s):  
Krishna Champaneria ◽  
Prajesh Prajapati

Cancer is one of the reason for mortality and its individual and collective impact is substantial. Conventional chemotherapy utilizes drugs that can destroy Tumor cells effectively. But these agents destroy healthy cells along with the tumor cells, leading to many adverse effects which include hypersensitivity reactions, nephrotoxicity, and neurotoxicity. To minimize the adverse effects, various drug delivery systems (DDSs) has been developed. Among them, nanoparticles are attractive platforms for it. So this review paper explores the recent work done on targeted delivery, enhancing tumor accumulation and longer blood circulation using more effective biomaterial that will enhance the properties of nanoparticles. Moreover, various target-specific delivery of drugs like antibody-targeted, targeting delivery through angiogenesis, mitochondria, CD44 receptor are also explained.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3083
Author(s):  
Cristiana Maria Grapa ◽  
Lucian Mocan ◽  
Dana Crisan ◽  
Mira Florea ◽  
Teodora Mocan

As the increase in therapeutic and imaging technologies is swiftly improving survival chances for cancer patients, pancreatic cancer (PC) still has a grim prognosis and a rising incidence. Practically everything distinguishing for this type of malignancy makes it challenging to treat: no approved method for early detection, extended asymptomatic state, limited treatment options, poor chemotherapy response and dense tumor stroma that impedes drug delivery. We provide a narrative review of our main findings in the field of nanoparticle directed treatment for PC, with a focus on biomarker targeted delivery. By reducing drug toxicity, increasing their tumor accumulation, ability to modulate tumor microenvironment and even improve imaging contrast, it seems that nanotechnology may one day give hope for better outcome in pancreatic cancer. Further conjugating nanoparticles with biomarkers that are overexpressed amplifies the benefits mentioned, with potential increase in survival and treatment response.


2018 ◽  
Vol 6 (47) ◽  
pp. 24267-24276 ◽  
Author(s):  
Wenhong Peng ◽  
Guangjun Zhang ◽  
Lin Shao ◽  
Chao Ma ◽  
Bin Zhang ◽  
...  

A novel strategy is proposed to construct simple-structured SMAs using a weakly electron-deficient thiazolothiazole (TTz) core. The highest PCE of 8.77% is recorded for TTz1-based OSCs, which is the highest efficiency to date among non-fullerene OSCs with simple-structured SMAs.


RSC Advances ◽  
2017 ◽  
Vol 7 (65) ◽  
pp. 40727-40733 ◽  
Author(s):  
Youzhi Cao ◽  
Qin Gao ◽  
Qiao Li ◽  
Xinbo Jing ◽  
Shufen Wang ◽  
...  

A novel strategy was applied for the preparation of MoS2/graphitic carbon nitride (g-C3N4) with porous morphology.


2005 ◽  
Vol 48 (spe2) ◽  
pp. 9-12 ◽  
Author(s):  
Priscilla Brunelli Pujatti ◽  
Carlos Jorge Rodrigues Simal ◽  
Raquel Gouvêa dos Santos

Technetium-99m (99mTc) has been the radionuclide of choice for nuclear medicine procedures and experimental research. Because of its optimal nuclear properties, 99mTc is suitable for high efficiency detection with the advantage of reduced radiological waste. Crotalus venom (CV) has been shown to reduce tumors in clinical studies and tissue distribution studies are very important for clinical use. The goal of this work was to obtain CV labeled with 99mTc which preserves its biological activity. After labeling, biological activity was assessed by hemolytic activity evaluation. Labeled and crude venom caused indirect hemolysis provided that the incubation medium contained an exogenous source of lecithin. High yield radiolabeled-CV was obtained and biological activity was preserved. The results suggest that 99mTc-CV can be a useful tool for biodistribution studies.


2021 ◽  
Author(s):  
Meng Wang ◽  
Zepeng Lv ◽  
Xuewei Lv ◽  
Qian Li ◽  
Jie Dang

Abstract Density functional theory (DFT) calculation indicators (ΔG, densities of state, D-band and bader charge) are commonly used to predict and analyze the hydrogen evolution reaction (HER) activity of catalysts, and most studies discuss only one or few of these indicators’ impact on catalysis, but still no report has comprehensively evaluated the influence of all these indicators on catalytic performance. Herein, foreseen by comprehensive consideration first, we report transition metal doped Ni3N nanosheets combined on Ni foam for utra-efficient alkaline hydrogen evolution. For dual transition metals doped Ni3N, Co,V-Ni3N exhibits remarkable HER performance with a significantly low overpotential of only 10 mV in alkaline electrolyte and 41 mV in alkaline seawater electrolyte at 10 mA cm− 2; while for single transition metal doped Ni3N, V-Ni3N exhibits the best performance with an overpotential of 15 mV and a Tafel slope of 37 mV dec− 1. Our work highlights the importance of comprehensive evaluation of DFT calculation indexes, and opens up a new method for the rational design of efficient and low-cost catalysts.


2020 ◽  
Author(s):  
Johanna Stéen ◽  
Jesper Tranekjær Jørgensen ◽  
Denk Christoph ◽  
Umberto Maria Battisti ◽  
Kamilla Nørregaard ◽  
...  

<p>The development of highly selective and fast biocompatible reactions for ligation and cleavage has paved the way for new diagnostic and therapeutic applications of <i>in vivo</i> chemistry. The concept of bioorthogonal pretargeting has attracted considerable interest, in particular for the targeted delivery of radionuclides and drugs. In nuclear medicine, pretargeting can provide increased target-to-background ratios at early time-points compared to traditional approaches. This reduces the radiation burden to healthy tissue and, depending on the selected radionuclide, enables better imaging contrast or higher therapeutic efficiency. Moreover, bioorthogonally triggered cleavage of pretargeted antibody-drug conjugates represents an emerging strategy to achieve controlled release and locally increased drug concentrations. The toolbox of bioorthogonal reactions has significantly expanded in the past decade, with the tetrazine ligation being the fastest and one of the most versatile <i>in vivo</i> chemistries. Progress in the field, however, relies heavily on the development and evaluation of (radio)labeled compounds, preventing the use of compound libraries for systematic studies. The rational design of tetrazine probes and triggers has thus been impeded by the limited understanding of the impact of structural parameters on the <i>in vivo</i> ligation performance. In this work, we describe the development of a pretargeted blocking assay that allows for the investigation of the <i>in vivo</i> fate of a structurally diverse library of 45 unlabeled tetrazines and their capability to reach and react with pretargeted <i>trans</i>-cyclooctene (TCO)-tagged antibodies in tumor-bearing mice. This study enabled us to assess the correlation of click reactivity and lipophilicity of tetrazines with their <i>in vivo</i> performance. In particular, high rate constants (>50,000 M<sup>-1</sup>s<sup>-1</sup>) for the reaction with TCO and low calculated log<i>D</i><sub>7.4</sub> values (below -3) of the tetrazine were identified as strong indicators for successful pretargeted <i>in vivo</i> click chemistry. Click-radiolabeling gave access to a set of selected <sup>18</sup>F-labeled tetrazines, including highly reactive scaffolds, which were used in pretargeted PET imaging studies to confirm the results from the blocking study. These insights thus enable the rational design of tetrazine probes for <i>in vivo</i> application and will thereby assist the clinical translation of bioorthogonal pretargeting.</p>


Sign in / Sign up

Export Citation Format

Share Document