scholarly journals Downregulation of TTF1 in the rat hypothalamic ARC or AVPV nucleus inhibits Kiss1 and GnRH expression, leading to puberty delay

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shaolian Zang ◽  
Xiaoqin Yin ◽  
Pin Li

Abstract Background TTF1 is a transcription factor that is expressed in the hypothalamus after birth and plays crucial roles in pubertal development. TTF1 may regulate the expression of the Kiss1 gene, which may drive puberty onset in the hypothalamic arcuate (ARC) and anterior ventral paraventricular (AVPV) nuclei. Methods A dual-luciferase reporter assay was used to detect binding between TTF1 and the Kiss1 gene promoter. To investigate the effects of TTF1, we modified TTF1 expression in cell lines and in the ARC or AVPV nucleus of 21-day-old female rats via lentivirus infection. TTF1 and other puberty onset-related genes were detected by qRT-PCR and western blot analyses. Results The in vitro data indicated that TTF1 knockdown (KD) significantly reduced Kiss1 and GnRH expression. Overexpression (OE) of TTF1 promoted Kiss1 expression. In vivo, the expression of Kiss1 and GnRH decreased significantly in the rats with hypothalamic ARC- or AVPV-specific TTF1 KD. The TTF1-KD rats showed vaginal opening delay. H&E staining revealed that the corpus luteum was obviously reduced at the early puberty and adult stages in the rats with ARC- or AVPV-specific TTF1 KD. Conclusion TTF1 bound to the promoter of the Kiss1 gene and enhanced its expression. For 21-day-old female rats, decreased TTF1 in the hypothalamic ARC or AVPV nucleus resulted in delayed vaginal opening and ovarian abnormalities. These observations suggested that TTF1 regulates puberty onset by promoting the expression of Kiss1 and plays an important role in gonad development.

2020 ◽  
Author(s):  
Xicen Zhang ◽  
Mei Ding ◽  
Yi Liu ◽  
Yongping Liu ◽  
Jiaxin Xing ◽  
...  

Abstract Background: In previous studies, we researched the association of the DRD2 gene promoter region SNP loci rs7116768, rs1047479195, rs1799732, rs1799978 and schizophrenia using Sanger sequencing. rs7116768 and rs1799978 were found to be slightly associated with schizophrenia. This study investigated the effects of haplotypes consisted of the four SNPs on protein expression level in vitro and identified the functional sequence in the 5’ regulatory region of DRD2 gene which has a potential link with schizophrenia.Methods: Recombinant plasmids with haplotypes, SNPs and 13 recombinant vectors containing deletion fragments from the DRD2 gene 5' regulatory region were transfected into HEK293 and SK-N-SH cell lines. Relative luciferase activity of the haplotypes, SNPs and different sequences was compared using a dual luciferase reporter assay system.Results: Haplotype H4(G-C-InsC-G) could significantly increase the gene expression in SK-N-SH cell lines. Allele C of rs7116768, allele A of rs1047479195 and allele del C of rs1799732 could up-regulate the gene expression. There were 5~7 functional regions in the promoter region of DRD2 gene that could affect the level of gene expression.Conclusion: We cannot rule out the possibility that different haplotypes may influence DRD2 gene expression in vivo. We observed that allele C of rs7116768, allele A of rs1047479195 and allele del C of rs1799732 could up-regulate gene expression. The truncation results confirmed the existence of functional regions in the promoter region of DRD2 gene that could affect the level of gene expression.


2020 ◽  
Author(s):  
Yan Zhang ◽  
Jintao He ◽  
Teng Yang ◽  
Wenhui He ◽  
Shan Jiang ◽  
...  

Abstract Background Highly upregulated in liver cancer (HULC), the specifically overexpressed long non-coding RNA (lncRNA) in human hepatocellular carcinoma (HCC), can promote the growth and metastasis of HCC cells. Therefore, it will be benefit to HCC treatment by effectively downregulating HULC. Liver X receptor (LXR), a member of nuclear receptor superfamily, exerts anti-tumor effects on various human malignancies including HCC. However, it is unclear whether the anti-HCC function of LXR is involved in the regulation of HULC. Methods Quantitative real-time PCR and Western blot were used to separately examine RNA and protein levels in HCC cells. Cell counting kit-8 assay was used to detect the growth of HCC cells in vitro . Dual-luciferase reporter assays were performed to analyze the regulation of forkhead box M1 (FOXM1) by miR-134-5p and the regulation of miR-134-5p by HULC. Xenograft models were engaged to evaluate the growth of HCC cells in vivo . Results In this study, we found that activation of LXR could inhibit the growth of HCC cells by downregulating HULC. Mechanistically, LXR decreased HULC via suppressing its gene promoter activity. Moreover, HULC and FOXM1 were highly expressed while miR-134-5p was lowly expressed in HCC tissues, and the level of HULC was positively correlated with that of FOXM1 while negatively correlated with that of miR-134-5p. Additionally, miR-134-5p downregulated FOXM1 by targeting 3′-untranslated region (UTR) of its mRNA, and HULC upregulated FOXM1 and its downstream target molecule cyclin D1 through sequestrating miR-134-5p. Furthermore, activation of LXR increased miR-134-5p while decreased FOXM1 by reducing HULC in HCC cells. The in vivo experiments showed that activation of LXR repressed the growth of HCC xenografts, and decreased HULC, FOXM1 and cyclin D1 while increased miR-134-5p in the xenografts. Conclusions Our results for the first time reveal that LXR can inhibit the growth of HCC cells by regulating HULC/miR-134-5p/FOXM1 axis. The novel pathway LXR/HULC/miR-134-5p/FOXM1 may serve as a promising target in HCC treatment.


2001 ◽  
Vol 170 (1) ◽  
pp. 91-98 ◽  
Author(s):  
P Fragner ◽  
SL Lee ◽  
S Aratan de Leon

TRH was initially found in the hypothalamus and regulates TSH secretion. TRH is also produced by insulin-containing beta-cells. Endogenous TRH positively regulates glucagon secretion and attenuates pancreatic exocrine secretion. We have previously shown that triiodothyronine (T(3)) down-regulates pre-pro-TRH gene expression in vivo and in vitro. The present study was designed to determine the initial impact of T(3) on rat TRH gene promoter and to compare this effect with that of dexamethasone (Dex). Primary islet cells and neoplastic cells (HIT T-15 and RIN m5F) were transiently transfected with fragments of the 5'-flanking sequence of TRH fused to the luciferase reporter gene. The persistence of high TRH concentrations in fetal islets in culture, probably due to transactivating factors, allowed us to explore how T(3) and Dex regulate the TRH promoter activity in transfected cells and whether the hormone effect is dependent on the cell type considered. TRH gene promoter activity is inhibited by T(3) in primary but not neoplastic cells and stimulated by Dex in both primary and neoplastic cells of islets. These findings validate previous in vivo and in vitro studies and indicate the transcriptional impact of these hormones on TRH gene expression in the pancreatic islets.


2020 ◽  
Author(s):  
Jing Ye ◽  
Ping Qin ◽  
Hailing Li ◽  
Tiezhu Kang ◽  
Wenyu Si ◽  
...  

Abstract The present study aimed to investigate whether Grid1, encoding the glutamate ionotropic receptor delta type subunit 1(GluD1), influences the onset of puberty in female rats. First, we detected the expression of Grid1 mRNA and its protein in the hypothalamus from infancy to puberty. Second, we evaluated the suppression of Grid1 expression by Lentivirus-Grid1 (LV-Grid1) in primary hypothalamus cells through measuring the expression level of Grid1. Finally, LV-Grid1 was intracerebroventricular injected (ICV) into 21-day-old rats and to investigate the effect of Grid1 suppression on puberty onset in vivo. Results showed that GluD1 immunoreactivity could be detected in the arcuate nucleus (ARC), paraventricular nucleus (PVN), and periventricular nucleus (PeN). Grid1 mRNA levels were the lowest at prepuberty. Treatment of hypothalamic neurons with LV-Grid1 decreased the mRNA expression levels of Grid1 and Rfrp-3 (encoding RFamide-related peptide 3, RFRP 3), but increased that of Gnrh (encoding gonadotropin-releasing hormone, GnRH). After 7 days of ICV LV-Grid1 into rats, the Grid1 mRNA was significantly reduced (by 46%), Gnrh mRNA expression was significantly increased, but Rfrp-3 mRNA levels were decreased. The time of rat vaginal opening (VO) was earlier in the LV-Grid1 group; the concentrations of luteinizing hormone (LH), estradiol (E2), and progesterone (P4) in serum were significantly increased; and the ovaries were significantly larger. Our study revealed that Grid1 affects the onset of puberty by regulating the level of GnRH and RFRP3.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098635
Author(s):  
Qi Gao ◽  
Ningqing Chang ◽  
Donglian Liu

Objectives To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3ʹ untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.


Author(s):  
Zhibin Liao ◽  
Hongwei Zhang ◽  
Chen Su ◽  
Furong Liu ◽  
Yachong Liu ◽  
...  

Abstract Background Aberrant expressions of long noncoding RNAs (lncRNAs) have been demonstrated to be related to the progress of HCC. The mechanisms that SNHG14 has participated in the development of HCC are obscure. Methods Quantitative real-time PCR (qRT-PCR) was used to measure the lncRNA, microRNA and mRNA expression level. Cell migration, invasion and proliferation ability were evaluated by transwell and CCK8 assays. The ceRNA regulatory mechanism of SNHG14 was evaluated by RNA immunoprecipitation (RIP) and dual luciferase reporter assay. Tumorigenesis mouse model was used to explore the roles of miR-876-5p in vivo. The protein levels of SSR2 were measured by western blot assay. Results In this study, we demonstrated that SNHG14 was highly expressed in HCC tissues, meanwhile, the elevated expression of SNHG14 predicted poor prognosis in patients with HCC. SNHG14 promoted proliferation and metastasis of HCC cells. We further revealed that SNHG14 functioned as a competing endogenous RNA (ceRNA) for miR-876-5p and that SSR2 was a downstream target of miR-876-5p in HCC. Transwell, CCK8 and animal experiments exhibited miR-876-5p inhibited HCC progression in vitro and in vivo. By conducting rescue experiments, we found the overexpression of SSR2 or knocking down the level of miR-876-5p could reverse the suppressive roles of SNHG14 depletion in HCC. Conclusion SNHG14 promotes HCC progress by acting as a sponge of miR-876-5p to regulate the expression of SSR2 in HCC.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 308
Author(s):  
Ying-Ray Lee ◽  
Chia-Ming Chang ◽  
Yuan-Chieh Yeh ◽  
Chi-Ying F. Huang ◽  
Feng-Mao Lin ◽  
...  

Honeysuckle (Lonicera japonica Thunb) is a traditional Chinese medicine (TCM) with an antipathogenic activity. MicroRNAs (miRNAs) are small non-coding RNA molecules that are ubiquitously expressed in cells. Endogenous miRNA may function as an innate response to block pathogen invasion. The miRNA expression profiles of both mice and humans after the ingestion of honeysuckle were obtained. Fifteen overexpressed miRNAs overlapped and were predicted to be capable of targeting three viruses: dengue virus (DENV), enterovirus 71 (EV71) and SARS-CoV-2. Among them, let-7a was examined to be capable of targeting the EV71 RNA genome by reporter assay and Western blotting. Moreover, honeysuckle-induced let-7a suppression of EV71 RNA and protein expression as well as viral replication were investigated both in vitro and in vivo. We demonstrated that let-7a targeted EV71 at the predicted sequences using luciferase reporter plasmids as well as two infectious replicons (pMP4-y-5 and pTOPO-4643). The suppression of EV71 replication and viral load was demonstrated in two cell lines by luciferase activity, RT-PCR, real-time PCR, Western blotting and plaque assay. Furthermore, EV71-infected suckling mice fed honeysuckle extract or inoculated with let-7a showed decreased clinical scores and a prolonged survival time accompanied with decreased viral RNA, protein expression and virus titer. The ingestion of honeysuckle attenuates EV71 replication and related pathogenesis partially through the upregulation of let-7a expression both in vitro and in vivo. Our previous report and the current findings imply that both honeysuckle and upregulated let-7a can execute a suppressive function against the replication of DENV and EV71. Taken together, this evidence indicates that honeysuckle can induce the expression of let-7a and that this miRNA as well as 11 other miRNAs have great potential to prevent and suppress EV71 replication.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xixi Li ◽  
Shengli Hu ◽  
Haitao Yin ◽  
Hongbo Zhang ◽  
Dan Zhou ◽  
...  

Abstract Background Culex pipiens (Cx. pipiens) complex, which acts as a vector of viruses and is widespread and abundant worldwide, including West Nile virus, Japanese encephalitis virus, and Sindbis virus, can cause serious vector-borne diseases affecting human health. Unfortunately, mosquitoes have developed deltamethrin resistance because of its long-term overuse, representing a major challenge to mosquito control. Understanding the molecular regulatory mechanisms of resistance is vital to control mosquitoes. MicroRNAs (miRNAs) are short non-coding RNAs that have been demonstrated to be important regulators of gene expression across a wide variety of organisms, which might function in mosquito deltamethrin resistance. In the present study, we aimed to investigate the regulatory functions of miR-4448 and CYP4H31 in the formation of insecticidal resistance in mosquito Culex pipiens pallens. Methods We used quantitative real-time reverse transcription PCR to measure miR-4448 and CYP4H31 (encoding a cytochrome P450) expression levels. The regulatory functions of miR-4448 and CYP4H31 were assessed using dual-luciferase reporter assays. Then, oral feeding, RNA interference, and the American Centers for Disease Control and Prevention bottle bioassay were used to determine miR-4448’s association with deltamethrin resistance by targeting CYP4H31in vivo. Cell Counting Kit-8 (CCK-8) was also used to detect the viability of pIB/V5-His-CYP4H31-transfected C6/36 cells after deltamethrin treatment in vitro. Results MiR-4448 was downregulated in the deltamethrin-resistant strain (DR strain), whereas CYP4H31 was downregulated in deltamethrin-susceptible strain. CYP4H31 expression was downregulated by miR-4448 recognizing and binding to its 3′ untranslated region. Functional verification experiments showed that miR-4448 overexpression resulted in lower expression of CYP4H31. The mortality of miR-4448 mimic-injected DR strain mosquitoes was higher than that of the controls. CCK-8 assays showed that CYP4H31 decreased cellular resistance to deltamethrin in vitro and the mortality of the DR strain increased when CYP4H31 was knocked down in vivo. Conclusions In mosquitoes, miR-4448 participates in deltamethrin resistance by targeting CYP4H31. The results of the present study increase our understanding of deltamethrin resistance mechanisms.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document