Liver X receptor inhibits the growth of hepatocellular carcinoma cells via regulating HULC/miR-134-5p/FOXM1 axis

2020 ◽  
Author(s):  
Yan Zhang ◽  
Jintao He ◽  
Teng Yang ◽  
Wenhui He ◽  
Shan Jiang ◽  
...  

Abstract Background Highly upregulated in liver cancer (HULC), the specifically overexpressed long non-coding RNA (lncRNA) in human hepatocellular carcinoma (HCC), can promote the growth and metastasis of HCC cells. Therefore, it will be benefit to HCC treatment by effectively downregulating HULC. Liver X receptor (LXR), a member of nuclear receptor superfamily, exerts anti-tumor effects on various human malignancies including HCC. However, it is unclear whether the anti-HCC function of LXR is involved in the regulation of HULC. Methods Quantitative real-time PCR and Western blot were used to separately examine RNA and protein levels in HCC cells. Cell counting kit-8 assay was used to detect the growth of HCC cells in vitro . Dual-luciferase reporter assays were performed to analyze the regulation of forkhead box M1 (FOXM1) by miR-134-5p and the regulation of miR-134-5p by HULC. Xenograft models were engaged to evaluate the growth of HCC cells in vivo . Results In this study, we found that activation of LXR could inhibit the growth of HCC cells by downregulating HULC. Mechanistically, LXR decreased HULC via suppressing its gene promoter activity. Moreover, HULC and FOXM1 were highly expressed while miR-134-5p was lowly expressed in HCC tissues, and the level of HULC was positively correlated with that of FOXM1 while negatively correlated with that of miR-134-5p. Additionally, miR-134-5p downregulated FOXM1 by targeting 3′-untranslated region (UTR) of its mRNA, and HULC upregulated FOXM1 and its downstream target molecule cyclin D1 through sequestrating miR-134-5p. Furthermore, activation of LXR increased miR-134-5p while decreased FOXM1 by reducing HULC in HCC cells. The in vivo experiments showed that activation of LXR repressed the growth of HCC xenografts, and decreased HULC, FOXM1 and cyclin D1 while increased miR-134-5p in the xenografts. Conclusions Our results for the first time reveal that LXR can inhibit the growth of HCC cells by regulating HULC/miR-134-5p/FOXM1 axis. The novel pathway LXR/HULC/miR-134-5p/FOXM1 may serve as a promising target in HCC treatment.

Author(s):  
Cong Cao ◽  
Jun Li ◽  
Guangzhi Li ◽  
Gaoyu Hu ◽  
Zhihua Deng ◽  
...  

Long non-coding RNAs (lncRNAs) have a considerable regulatory influence on multiple biological processes. Nevertheless, the role of TMEM220-AS1 in hepatocellular carcinoma (HCC) remains unclear. We used The Cancer Genome Atlas (TCGA) database to analyze the differentially expressed lncRNAs. qRT-PCR was used to verify the results for a large population. The in vitro effects of TMEM220-AS1 on HCC cells were determined using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), flow cytometry, and Transwell assays in HCC cells. We used qRT-PCR and western blotting to identify the epithelial-mesenchymal transition (EMT). Moreover, we performed bioinformatics analysis, western blotting, dual luciferase reporter gene assay, RNA pull-down, and RNA binding protein immunoprecipitation (RIP) to investigate the underlying molecular mechanisms of TMEM220-AS1 function. Finally, the function of TMEM220-AS1 was verified in vivo. The results showed that TMEM220-AS1 was expressed at considerably low levels in HCC. It was demonstrated that malignant phenotypes and EMT of HCC cells were promoted by the knock down of TMEM220-AS1 both in vivo and in vitro. TMEM220-AS1, which was detected primarily in the cytoplasm, functioned as an miRNA sponge to bind miR-484 and promote the level of membrane-associated guanylate kinase, WW, and PDZ domain containing 1 (MAGI1), thereby curbing the malignant phenotypes of HCC cells. In conclusion, low levels of TMEM220-AS1 promote proliferation and metastasis through the miR-484/MAGI1 axis in HCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanhui Yu ◽  
Lijuan Bian ◽  
Renfei Liu ◽  
Yitong Wang ◽  
Xia Xiao

Abstract Background Circular RNA hsa_circ_0061395 (circ_0061395) has been reported to accelerate the advancement of hepatocellular carcinoma (HCC). However, the regulatory mechanism by which circ_0061395 modulates the progression of HCC is unclear. Methods The morphology and size of exosomes were analyzed by transmission electron microscope (TEM) and nanoparticle-tracking analysis (NTA). Protein levels were detected by western blotting. Expression levels of circ_0061395, microRNA (miR)-877-5p, and phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) mRNA were assessed by quantitative real time polymerase chain reaction (qRT-PCR). The proliferation, invasion, migration, cell cycle progression, and apoptosis were analyzed by cell counting kit-8 (CCK-8), plate clone, transwell, or flow cytometry assays. The targeting relationship between circ_0061395 or PIK3R3 and miR-877-5p was verified using the dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. Xenograft assay was performed to confirm the biological function of circ_0061395 in HCC. Results Circ_0061395 was upregulated in HCC tissues, serum, cells, and serum-derived exosomes. Circ_0061395 silencing decreased tumor growth in vivo, and induced cell cycle arrest, apoptosis, repressed proliferation, invasion, and migration of HCC cells in vitro. MiR-877-5p was downregulated while PIK3R3 was upregulated in HCC. Circ_0061395 regulated PIK3R3 expression via competitively binding to miR-877-5p. MiR-877-5p inhibitor overturned circ_0061395 knockdown-mediated influence on malignant behaviors of HCC cells. PIK3R3 overexpression reversed the suppressive influence of miR-877-5p mimic on malignant behaviors of HCC cells. Conclusion Circ_0061395 facilitated HCC progression via regulating the miR-877-5p/PIK3R3 axis, providing a new perspective on the advancement of HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Dai ◽  
Jingyi Deng ◽  
Jinrong Zhou ◽  
Zhuhong Wang ◽  
Xiao-feng Yuan ◽  
...  

Abstract Background Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. Methods The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. Results We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. Conclusion TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.


2021 ◽  
Author(s):  
kunwei niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long non-coding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. We study aim to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. Methods: RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenografts experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, Dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC.Results: URHC silencing may inhibit the HCC cells proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggesting of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p.Conclusion: Together, our study elucidated the role of URHC as a miRNA sponge in HCC, and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


2020 ◽  
Author(s):  
Nan Yang ◽  
Tianxiang Chen ◽  
Bowen Yao ◽  
Liang Wang ◽  
Runkun Liu ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have obtained growing attention due to their potential effects as novel regulators in various tumors. This study aimed to investigate the expression and roles of lncRNA ZFPM2-AS1 in the progression of hepatocellular carcinoma (HCC). Methods: Transwell was used to determine migration and invasion of HCC cells in vitro. The lung metastasis mouse model was established to detect tumor metastasis of HCC in vivo. The direct binding of miR-3612 to 3'UTR of DAM15 was confirmed by luciferase reporter assay. The expression of ZFPM2-AS1 and miR-3612 in HCC specimens and cell lines were detected by real-time PCR. The correlation among ZFPM2-AS1 and miR-3612 were disclosed by a dual-luciferase reporter assay, RIP assay and biotin pull-down assay.Results: In present study, we found that ZFPM2-AS1 was up-regulated in HCC tissues and cells and its upregulation was associated with TNM stage, vascular invasion, and poor prognosis of HCC patients. Functionally, gain- and loss-of-function experiments indicated that ZFPM2-AS1 promoted cell migration, invasion and EMT progress in vitro and in vivo. ZFPM2-AS1 could function as a competing endogenous RNA (ceRNA) by sponging miR-3612 in HCC cells. Mechanically, miR-3612 inhibited HCC metastasis and alternation of miR-3612 reversed the promotive effects of ZFPM2-AS1 on HCC cells. In addition, we confirmed that ADAM15 was a direct target of miR-3612 in HCC and mediated the biological effects of miR-3612 and ZFPM2-AS1 in HCC. Curcumin, an active derivative from turmeric, exerts its anticancer effects through ZFPM2-AS1/miR-3612/ADAM15 pathway. Our data identified ZFPM2-AS1 as a novel oncogenic lncRNA and correlated malignant clinical outcomes in HCC patients. Conclusions: ZFPM2-AS1 performed as oncogenic role via targeting miR-3612 and subsequently promoted ADAM15 expression in HCC. Our results revealed that ZFPM2-AS1 could be a potential prognostic biomarker and therapeutic target for HCC.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Xiaohui Duan ◽  
Wei Li ◽  
Peng Hu ◽  
Bo Jiang ◽  
Jianhui Yang ◽  
...  

Abstract Hepatocellular carcinoma (HCC) remains one of the most common malignant tumors worldwide. The present study aimed to investigate the biological role of microRNA-183-5p (miR-183-5p), a novel tumor-related microRNA (miRNA), in HCC and illuminate the possible molecular mechanisms. The expression patterns of miR-183-5p in clinical samples were characterized using qPCR analysis. Kaplan–Meier survival curve was applied to evaluate the correlation between miR-183-5p expression and overall survival of HCC patients. Effects of miR-183-5p knockdown on HCC cell proliferation, apoptosis, migration and invasion capabilities were determined via Cell Counting Kit-8 (CCK8) assays, flow cytometry, scratch wound healing assays and Transwell invasion assays, respectively. Mouse neoplasm transplantation models were established to assess the effects of miR-183-5p knockdown on tumor growth in vivo. Bioinformatics analysis, dual-luciferase reporter assays and rescue assays were performed for mechanistic researches. Results showed that miR-183-5p was highly expressed in tumorous tissues compared with adjacent normal tissues. Elevated miR-183-5p expression correlated with shorter overall survival of HCC patients. Moreover, miR-183-5p knockdown significantly suppressed proliferation, survival, migration and invasion of HCC cells compared with negative control treatment. Consistently, miR-183-5p knockdown restrained tumor growth in vivo. Furthermore, programmed cell death factor 4 (PDCD4) was identified as a direct target of miR-183-5p. Additionally, PDCD4 down-regulation was observed to abrogate the inhibitory effects of miR-183-5p knockdown on malignant phenotypes of HCC cells. Collectively, our data suggest that miR-183-5p may exert an oncogenic role in HCC through directly targeting PDCD4. The current study may offer some new insights into understanding the role of miR-183-5p in HCC.


Author(s):  
Yuanjun Lu ◽  
Yau-Tuen Chan ◽  
Hor-Yue Tan ◽  
Cheng Zhang ◽  
Wei Guo ◽  
...  

Abstract Background Drug resistance to sorafenib greatly limited the benefits of treatment in patients with hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the development of drug resistance. The key miRNA regulators related to the clinical outcome of sorafenib treatment and their molecular mechanisms remain to be identified. Methods The clinical significance of miRNA-related epigenetic changes in sorafenib-resistant HCC was evaluated by analyzing publicly available databases and in-house human HCC tissues. The biological functions of miR-23a-3p were investigated both in vitro and in vivo. Proteomics and bioinformatics analyses were conducted to identify the mechanisms that regulating miR-23a-3p. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to validate the binding relationship of miR-23a-3p and its targets. Results We found that miR-23a-3p was the most prominent miRNA in HCC, which was overexpressed in sorafenib non-responders and indicated poor survival and HCC relapse. Sorafenib-resistant cells exhibited increased miR-23a-3p transcription in an ETS Proto-Oncogene 1 (ETS1)-dependent manner. CRISPR-Cas9 knockout of miR-23a-3p improved sorafenib response in HCC cells as well as orthotopic HCC tumours. Proteomics analysis suggested that sorafenib-induced ferroptosis was the key pathway suppressed by miR-23a-3p with reduced cellular iron accumulation and lipid peroxidation. MiR-23a-3p directly targeted the 3′-untranslated regions (UTR) of ACSL4, the key positive regulator of ferroptosis. The miR-23a-3p inhibitor rescued ACSL4 expression and induced ferrotoptic cell death in sorafenib-treated HCC cells. The co-delivery of ACSL4 siRNA and miR-23a-3p inhibitor abolished sorafenib response. Conclusion Our study demonstrates that ETS1/miR-23a-3p/ACSL4 axis contributes to sorafenib resistance in HCC through regulating ferroptosis. Our findings suggest that miR-23a-3p could be a potential target to improve sorafenib responsiveness in HCC patients.


Author(s):  
Bin Zhu ◽  
Jun-Jie Chen ◽  
Ying Feng ◽  
Jun-Ling Yang ◽  
Hua Huang ◽  
...  

Abstract Background Angiogenesis plays an important role in the occurrence, development and metastasis of hepatocellular carcinoma (HCC). According to previous studies, miR-378a participates in tumorigenesis and tumor metastasis, but its exact role in HCC angiogenesis remains poorly understood. Methods qRT-PCR was used to investigate the expression of miR-378a-3p in HCC tissues and cell lines. The effects of miR-378a-3p on HCC in vitro and in vivo were examined by Cell Counting Kit-8 (CCK-8), Transwell, tube formation and Matrigel plug assays, RNA sequencing, bioinformatics, luciferase reporter, immunofluorescence and chromatin immunoprecipitation (ChIP) assays were used to detect the molecular mechanism by which miR-378a-3p inhibits angiogenesis. Results We confirmed that miR-378a-3p expression was significantly downregulated and associated with higher microvascular density (MVD) in HCC; miR-378a-3p downregulation indicated a short survival time in HCC patients. miR-378a-3p knockdown led to a significant increase in angiogenesis in vitro and in vivo. We found that miR-378a-3p directly targeted TNF receptor associated factor 1 (TRAF1) to attenuate NF-κB signaling, and then downregulated secreted vascular endothelial growth factor. DNA methyltransferase 1 (DNMT1)-mediated hypermethylation of miR-378a-3p was responsible for downregulating miR-378a-3p. Moreover, a series of investigations indicated that p65 initiated a positive feedback loop that could upregulate DNMT1 to promote hypermethylation of the miR-378a-3p promoter. Conclusion Our study indicates a novel DNMT1/miR-378a-3p/TRAF1/NF-κB positive feedback loop in HCC cells, which may become a potential therapeutic target for HCC.


2021 ◽  
Author(s):  
DengYong Zhang ◽  
FangFang Chen ◽  
ShuoShuo Ma ◽  
YongChun Zhou ◽  
Wanliang Sun ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) processes in multi-steps which involves the sophisticated interactions of genetics, epigenetics, and transcriptional changes. According to before investigations, methyltransferase-like 3 (METTL3)-mediated m6A modification regulates the development of various cancers by regulating gene stability. However, the studies focusing on miRNA’s regulatory effect of N6-methyladenosine (m6A) modification on HCC progression are still limited. Methods: Immunochemistry (IHC) staining detected the histopathological changes in the tumor tissues. Cell Counting Kit-8 (CCK-8), clone formation, and transwell assay investigated the changes in cancer cell proliferation, invasion, and migration. The RNA m6A level was confirmed by methylated RNA immunoprecipitation. The RNA stability assay indicated the half-life (t1/2) of RNA in HCC cells. The prognosis of the indicated patients’ cohort was analyzed using the cancer genome atlas (TCGA) datasets. Luciferase report analysis was used to study the potential binding between microRNA (miRNA) and mRNA. A mice tumor transplant model was further established to study the changes in tumor progression. Results: Follistatin-like 5 (FSTL5) was found to be significantly downregulated in HCC, and it inhibited the further progression of HCC. The RNA stability analysis indicated that the mRNA t1/2 gene of HCC cells was shortened. Besides, METTL3 reduced the stability of FSTL5 mRNA in a m6A-YTH domain family 2(YTHDF2)-dependent manner. Functional experiments revealed that the downregulated METTL3 inhibited the HCC progression by up-regulating FSTL5 in vitro and in vivo. Luciferase report analysis confirmed that miR-186-5p directly targeted the METTL3. Additionally, miR-186-5p inhibited the proliferation, migration, and invasion of HCC cells by downregulating METTL3. We identified that miR-186-5p prevented the HCC progression by targeting METTL3 to regulate m6A-mediated FSTL5 stabilization. Conclusions: The miR-186-5p/METTL3/YTHDF2/FSTL5 axis perhaps point out a new direction for the targeted therapy of HCC.


Sign in / Sign up

Export Citation Format

Share Document