scholarly journals The effect of short term exposure to outdoor air pollution on fertility

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Mireia González-Comadran ◽  
Bénédicte Jacquemin ◽  
Marta Cirach ◽  
Rafael Lafuente ◽  
Thomas Cole-Hunter ◽  
...  

Abstract Background There is evidence to suggest that long term exposure to air pollution could be associated with decreased levels of fertility, although there is controversy as to how short term exposure may compromise fertility in IVF patients and what windows of exposure during the IVF process patients could be most vulnerable. Methods This prospective cohort study aimed to evaluate the impact of acute exposure that air pollution have on reproductive outcomes in different moments of the IVF process. Women undergoing IVF living in Barcelona were recruited. Individual air pollution exposures were modelled at their home address 15 and 3 days before embryo transfer (15D and 3D, respectively), the same day of transfer (D0), and 7 days after (D7). The pollutants modelled were: PM2.5 [particulate matter (PM) ≤2.5 μm], PMcoarse (PM between 2.5 and 10μm), PM10 (PM≤10 μm), PM2.5 abs, and NO2 and NOx. Outcomes were analyzed using multi-level regression models, with adjustment for co-pollutants and confouding factors. Two sensitivity analyses were performed. First, the model was adjusted for subacute exposure (received 15 days before ET). The second analysis was based on the first transfer performed on each patient aiming to exclude patients who failed previous transfers. Results One hundred ninety-four women were recruited, contributing with data for 486 embryo transfers. Acute and subacute exposure to PMs showed a tendency in increasing miscarriage rate and reducing clinical pregnancy rate, although results were not statistically significant. The first sensitivity analysis, showed a significant risk of miscarriage for PM2.5 exposure on 3D after adjusting for subacute exposure, and an increased risk of achieving no pregnancy for PM2.5, PMcoarse and PM10 on 3D. The second sensitivity analysis showed a significant risk of miscarriage for PM2.5 exposure on 3D, and a significant risk of achieving no pregnancy for PM2.5, PMcoarse and PM10 particularly on 3D. No association was observed for nitrogen dioxides on reproductive outcomes. Conclusions Exposure to particulate matter has a negative impact on reproductive outcomes in IVF patients. Subacute exposure seems to increase the harmful effect of the acute exposure on miscarriage and pregnancy rates. Nitrogen dioxides do not modify significantly the reproductive success.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2518
Author(s):  
Ariana Lammers ◽  
Anne H. Neerincx ◽  
Susanne J. H. Vijverberg ◽  
Cristina Longo ◽  
Nicole A. H. Janssen ◽  
...  

Environmental factors, such as air pollution, can affect the composition of exhaled breath, and should be well understood before biomarkers in exhaled breath can be used in clinical practice. Our objective was to investigate whether short-term exposures to air pollution can be detected in the exhaled breath profile of healthy adults. In this study, 20 healthy young adults were exposed 2–4 times to the ambient air near a major airport and two highways. Before and after each 5 h exposure, exhaled breath was analyzed using an electronic nose (eNose) consisting of seven different cross-reactive metal-oxide sensors. The discrimination between pre and post-exposure was investigated with multilevel partial least square discriminant analysis (PLSDA), followed by linear discriminant and receiver operating characteristic (ROC) analysis, for all data (71 visits), and for a training (51 visits) and validation set (20 visits). Using all eNose measurements and the training set, discrimination between pre and post-exposure resulted in an area under the ROC curve of 0.83 (95% CI = 0.76–0.89) and 0.84 (95% CI = 0.75–0.92), whereas it decreased to 0.66 (95% CI = 0.48–0.84) in the validation set. Short-term exposure to high levels of air pollution potentially influences the exhaled breath profiles of healthy adults, however, the effects may be minimal for regular daily exposures.


Author(s):  
Jiyoung Shin ◽  
Jongmin Oh ◽  
In Sook Kang ◽  
Eunhee Ha ◽  
Wook Bum Pyun

Background/Aim: Previous studies have suggested that the short-term ambient air pollution and temperature are associated with myocardial infarction. In this study, we aimed to conduct a time-series analysis to assess the impact of fine particulate matter (PM2.5) and temperature on acute myocardial infarction (AMI) among adults over 20 years of age in Korea by using the data from the Korean National Health Information Database (KNHID). Methods: The daily data of 192,567 AMI cases in Seoul were collected from the nationwide, population-based KNHID from 2005 to 2014. The monitoring data of ambient PM2.5 from the Seoul Research Institute of Public Health and Environment were also collected. A generalized additive model (GAM) that allowed for a quasi-Poisson distribution was used to analyze the effects of PM2.5 and temperature on the incidence of AMI. Results: The models with PM2.5 lag structures of lag 0 and 2-day averages of lag 0 and 1 (lag 01) showed significant associations with AMI (Relative risk [RR]: 1.011, CI: 1.003–1.020 for lag 0, RR: 1.010, CI: 1.000–1.020 for lag 01) after adjusting the covariates. Stratification analysis conducted in the cold season (October–April) and the warm season (May–September) showed a significant lag 0 effect for AMI cases in the cold season only. Conclusions: In conclusion, acute exposure to PM2.5 was significantly associated with AMI morbidity at lag 0 in Seoul, Korea. This increased risk was also observed at low temperatures.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Kent G Meredith ◽  
C A Pope ◽  
Joseph B Muhlestein ◽  
Jeffrey L Anderson ◽  
John B Cannon ◽  
...  

Introduction: Air pollution is associated with greater cardiovascular event risk, but which types of events and the specific at-risk individuals remain unknown. Hypothesis: Short-term exposure to fine particulate matter (PM 2.5 ) is associated with greater risk of acute coronary syndromes (ACS), including ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina (USA). Methods: ACS events treated at Intermountain Healthcare hospitals in Utah’s urban Wasatch Front region between September 10, 1993 and May 15, 2014 were included if the patient resided in that area (N=16,314). A time-stratified case-crossover design was performed matching the PM 2.5 exposure at the time of event with periods when the event did not occur (referent), for STEMI, NSTEMI, and USA. Patients served as their own controls. Odds ratios (OR) were determined for exposure threshold versus linear, non-threshold models. Results: In STEMI, NSTEMI, and USA patients, age averaged 62, 64, and 63 years; males constituted 73%, 66%, and 68%; current or past smoking was prevalent in 33%, 25%, and 26%; and significant coronary artery disease (CAD) (defined as ≥1 coronary with ≥70% stenosis) was found among 95%, 75%, and 74%, respectively. Short-term PM 2.5 exposure was associated with ACS events (Table). Conclusions: Short-term exposure of PM 2.5 was strongly associated with greater risk of STEMI, especially in patients with angiographic CAD. No association with NSTEMI was found, and only a weak effect for USA. This study supports a PM 2.5 exposure threshold of 25 μg/m 3 , below which little exposure effect is seen, while the effect is linear above that level.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1415.1-1415
Author(s):  
F. Ingegnoli ◽  
T. Ubiali ◽  
T. Schioppo ◽  
V. Longo ◽  
S. Iodice ◽  
...  

Background:Air pollution is believed to cause oxidative stress and systemic inflammation, that could trigger autoimmunity in rheumatoid arthritis (RA). Several epidemiological studies investigated the possible role of air pollution in the outbreak of RA with controversial results. As far as we know, studies on the effects on disease activity of short-term exposure have not been published.Objectives:To evaluate the impact of short-term exposure to air pollutants (daily mean PM10, PM2.5, NO2and O3) on disease activity in patients with RA.Methods:Consecutive patients with RA (ACR/EULAR Criteria 2010) resident in Lombardy (Italy) were enrolled. In each patient Disease Activity Score on 28 joints (DAS28), Simple Disease Activity Index (SDAI) were assessed. Daily PM10, PM2.5, NO2and O3concentrations, estimated by Regional Environmental Protection Agency at municipality resolution, were used to assign short-term exposure from day of visit back to 14 days. Multivariable linear regression models were performed to identify the day of the pollutants independently associated with disease activity indices, adjusting for the variables significant at the univariate analysis. β coefficients were reported for 1 μg/m3increments of pollutants’ concentrations.Results:422 RA patients were enrolled in the study between January and June 2018: 81.5% females, mean age 58.2±13.3 years, mean disease duration 16.1±11.5 years, 27.3% current smokers, 59.5% RF positivity, 54.5% ACPA positivity. Sparse punctual statistically significant negative associations emerged at the multivariate analysis between PM10, PM2.5, NO2and the outcomes, although with very low estimates, whereas positive associations resulted for O3.Afterwards patients were stratified in 3 subgroups according to their ongoing treatment (no therapy, n=25, conventional synthetic Disease Modifying anti-Rheumatic Drugs -DMARDs-, n=108 and biological or targeted synthetic DMARDs, n=289). A statistical significance was found by analysing the influence of therapy on the interaction between PM2.5and DAS28 (Figure below): a positive trend between PM2.5and DAS28 appeared in the first two groups (no therapy, 0.013±0.007, p=0.06 and csDMARDs, 0.006±0.004, p=0.17), whereas a statistically significant inverse association was seen in the b/tsDMARDs group (-0.005±0.002, p=0.01). Therapy interaction was particularly evident in several days before the visit also for O3.Conclusion:The changes of the outcome measures related to the increase of the pollutants’ levels did not reach the minimal clinically important difference, therefore air pollution seems barely relevant on disease activity once the loss of tolerance is established in RA. O3and PM/NO2always exhibit an opposite performance having inversely proportional atmospheric concentrations, whereas the biological role of this substance is still matter of debate and will need further understanding. Therapy seems to be able to interact with the relation between air pollutants and the parameters considered.Disclosure of Interests:Francesca Ingegnoli: None declared, Tania Ubiali: None declared, Tommaso Schioppo: None declared, Valentina Longo: None declared, Simona Iodice: None declared, Ennio Giulio Favalli Consultant of: Consultant and/or speaker for BMS, Eli-Lilly, MSD, UCB, Pfizer, Sanofi-Genzyme, Novartis, and Abbvie, Speakers bureau: Consultant and/or speaker for BMS, Eli-Lilly, MSD, UCB, Pfizer, Sanofi-Genzyme, Novartis, and Abbvie, Orazio De Lucia: None declared, Antonella Murgo: None declared, Valentina Bollati: None declared, Roberto Caporali Consultant of: AbbVie; Gilead Sciences, Inc.; Lilly; Merck Sharp & Dohme; Celgene; Bristol-Myers Squibb; Pfizer; UCB, Speakers bureau: Abbvie; Bristol-Myers Squibb; Celgene; Lilly; Gilead Sciences, Inc; MSD; Pfizer; Roche; UCB


2020 ◽  
Author(s):  
Lejian He ◽  
Laijun Zhao ◽  
Yonghong Liu ◽  
Zhaowen Qiu ◽  
H. Oliver Gao

Abstract Background: Cycling to work has been promoted as a green commute in many countries because of its reduced congestion relative to that of cars and its reduced environmental impact on air pollution. However, cyclists might be exposed to higher air pollution, causing adverse health effects. Few studies have examined the respiratory effects of traffic-related air pollution exposure during short-term cycling, especially in developing countries with heavy air pollution. The aim of this study was to assess the impact of air pollution exposure on lung function while cycling in traffic. Methods: Twenty-five healthy adults in total cycled on a specified route in each of three Chinese cities during four periods of a day. Lung function measures were collected immediately before and after cycling. Real-time particulate matter (PM) and the particle number count (PNC) for particles with different sizes were measured along each cycling route, while ambient sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) levels were measured at the nearest stations. Mixed-effect models were used to estimate the impact of short-term air pollution exposure on participants’ lung function measures during cycling. Results: We found that an interquartile increase in particulate matter consisting of fine particles (PM1, aerodynamic diameter £ 1 mm; and PM2.5, aerodynamic diameter £ 2.5 mm) was associated with a significant decrease in forced vital capacity (FVC) (PM1, –5.61%, p = 0.021; PM2.5, –5.57%, p = 0.022). Interquartile increases in the 99th percentile of PNC for fine particles (aerodynamic diameter 0.3–0.4 mm) also had significant negative associations with FVC (0.3 mm, –5.13%, p = 0.041; 0.35 mm, –4.81%, p = 0.045; 0.4 mm, –4.59%, p = 0.035). We also observed significant inverse relationships between ambient CO levels and FVC (–5.78%, p = 0.015).Conclusions: Our results suggest that short-term exposure to fine particles and CO while cycling in traffic contributes to a reduction in FVC of cyclists.


Author(s):  
Francesca Ingegnoli ◽  
Tania Ubiali ◽  
Tommaso Schioppo ◽  
Valentina Longo ◽  
Antonella Murgo ◽  
...  

Rheumatoid arthritis (RA) flare is related to increased joint damage, disability, and healthcare use. The impact of short-term air pollution exposure on RA disease activity is still a matter of debate. In this cross-sectional study, we investigated whether short-term exposure to particulate matter (PM)10, PM2.5, nitrogen dioxide (NO2), and ozone (O3) affected RA disease activity (DAS28 and SDAI) in 422 consecutive RA residents in Lombardy, North of Italy. Air pollutant concentrations, estimated by Regional Environmental Protection Agency (Lombardy—Italy) at the municipality level, were used to assign short-term exposure from the day of enrolment, back to seven days. Some significant negative associations emerged between RA disease activity, PM10, and NO2, whereas some positive associations were observed for O3. Patients were also stratified according to their ongoing Disease-Modifying anti-Rheumatic Drugs (DMARDs) treatment: no DMARDs (n = 25), conventional synthetic DMARDs (n = 108), and biological or targeted synthetic DMARDs (n = 289). Therapy interaction seemed partially able to influence the relationship between short-term air pollution exposure and RA disease activity (PM2.5 levels and DAS28 at the day of the visit-O3 levels and disease activity scores for the seven days before the evaluation). According to our results, the impact of short-term air pollution exposure (seven days) minimally impacts disease activity. Moreover, our study suggests therapy could alter the response to environmental factors. Further evidence is needed to elucidate determinants of RA flare and its management.


Sign in / Sign up

Export Citation Format

Share Document