scholarly journals TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Fatemeh Yousefi ◽  
Zahra Shabaninejad ◽  
Sina Vakili ◽  
Maryam Derakhshan ◽  
Ahmad Movahedpour ◽  
...  
2019 ◽  
Vol 20 (6) ◽  
pp. 1436 ◽  
Author(s):  
Edyta Działo ◽  
Michał Rudnik ◽  
Roman Koning ◽  
Marcin Czepiel ◽  
Karolina Tkacz ◽  
...  

WNT signaling plays an important role in fibrotic processes in the heart. Recently, exosomes have been proposed as novel extracellular transporters for WNT proteins. In this study, we analyzed whether WNT3a and WNT5a carried by exosomes could activate downstream molecular pathways in human cardiac fibroblasts. Exosomes were isolated from conditioned medium of control, WNT3a- and WNT5a-producing L cells by differential ultracentrifugations. Obtained exosomes showed size ranging between 20–150 nm and expressed exosomal markers ALG-2-interacting protein X (ALIX) and CD63. Treatment with WNT3a-rich exosomes inhibited activity of glycogen synthase kinase 3β (GSK3β), induced nuclear translocation of β-catenin, and activated T-cell factor (TCF)/lymphoid enhancer factor (LEF) transcription factors as well as expression of WNT/β-catenin responsive genes in cardiac fibroblasts, but did not coactivate extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein 1 (AP-1) signaling pathways. In contrast, exosomes produced by WNT5a-producing L cells failed to activate β-catenin-dependent response, but successfully triggered phosphorylation of ERK1/2 and JNK and stimulated IL-6 production. In conclusion, exosomes containing WNT proteins can functionally contribute to cardiac fibrosis by activating profibrotic WNT pathways on cardiac fibroblasts and may represent a novel mechanism of spreading profibrotic signals in the heart.


2020 ◽  
Vol 20 ◽  
Author(s):  
Ammad Ahmad Farooqi ◽  
Evangelia Legaki ◽  
Maria Gazouli ◽  
Silvia Rinaldi ◽  
Rossana Berardi

: Central dogma of molecular biology has remained cornerstone of classical molecular biology but serendipitous discovery of microRNAs (miRNAs) in nematodes paradigmatically shifted our current understanding of the intricate mech-anisms which occur during transitions from transcription to translation. Discovery of miRNA captured tremendous attention and appreciation and we had witnessed an explosion in the field of non-coding RNAs. Ground-breaking discoveries in the field of non-coding RNAs have helped in better characterization of microRNAs and long non-coding RNAs (LncRNAs). There is an ever-increasing list of miRNA targets which are regulated by MALAT1 to stimulate or repress expression of tar-get genes. However, in this review our main focus is to summarize mechanistic insights related to MALAT1-mediated regu-lation of oncogenic signaling pathways. We have discussed how MALAT1 modulated TGF/SMAD and Hippo pathways in various cancers. We have also comprehensively summarized how JAK/STAT and Wnt/β-catenin pathways stimulated MALAT1 expression and consequentially how MALAT1 potentiated these signaling cascades to promote cancer. MALAT1 research has undergone substantial broadening however, there is still a need to identify additional mechanisms. MALAT1 is involved in multi-layered regulation of multiple transduction cascades and detailed analysis of different pathways will be helpful in getting a step closer to individualized medicine.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 802
Author(s):  
Teresa Vezza ◽  
Aranzazu M. de Marañón ◽  
Francisco Canet ◽  
Pedro Díaz-Pozo ◽  
Miguel Marti ◽  
...  

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing β-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19–24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.


2021 ◽  
Vol 526 ◽  
pp. 111197
Author(s):  
Fabiana Tortora ◽  
George A. Calin ◽  
Amelia Cimmino

2014 ◽  
Vol 38 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Xingrao Ke ◽  
Bohan Xing ◽  
Baifeng Yu ◽  
Xing Yu ◽  
Amber Majnik ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Garima Sharma ◽  
Ashish Ranjan Sharma ◽  
Eun-Min Seo ◽  
Ju-Suk Nam

The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.


Sign in / Sign up

Export Citation Format

Share Document