scholarly journals Identification of key genes in invasive clinically non-functioning pituitary adenoma by integrating analysis of DNA methylation and mRNA expression profiles

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Sen Cheng ◽  
Weiyan Xie ◽  
Yazhou Miao ◽  
Jing Guo ◽  
Jichao Wang ◽  
...  

Abstract Background Tumor surrounding the internal carotid artery or invading to the cavernous sinus is an important characteristic of invasive pituitary adenoma, and a pivotal factor of tumor residue and regrowth. Without specific changes in serum hormone related to the adenohypophyseal cell of origin, clinically non-functioning pituitary adenoma is more likely to be diagnosed at invasive stages compared with functioning pituitary adenoma. The underlying mechanism of tumor invasion remains unknown. In this study, we aimed to identify key genes in tumor invasion by integrating analyses of DNA methylation and gene expression profiles. Method Genome-wide DNA methylation and mRNA microarray analysis were performed for tumor samples from 68 patients at the Beijing Tiantan Hospital. Differentially expressed genes and methylated probes were identified based on an invasive vs non-invasive grouping. Differentially methylated probes in the promoter region of targeted genes were assessed. Pearson correlation analysis was used to identify genes with a strong association between DNA methylation status and expression levels. Pyrosequencing and RT-PCR were used to validate the methylation status and expression levels of candidate genes, respectively. Results A total of 8842 differentially methylated probes, located on 4582 genes, and 661 differentially expressed genes were identified. Both promoter methylation and expression alterations were observed for 115 genes with 58 genes showing a negative correlation between DNA methylation status and expression level. Nineteen genes that exhibited notably negative correlations between DNA methylation and gene expression levels, are involved in various gene ontologies and pathways, or played an important role in different diseases, were regarded as candidate genes. We found an increased methylation with a decreased expression of PHYHD1, LTBR, C22orf42, PRR5, ANKDD1A, RAB13, CAMKV, KIFC3, WNT4 and STAT6, and a decreased methylation with an increased expression of MYBPHL. The methylation status and expression levels of these genes were validated by pyrosequencing and RT-PCR. Conclusions The DNA methylation and expression levels of PHYHD1, LTBR, MYBPHL, C22orf42, PRR5, ANKDD1A, RAB13, CAMKV, KIFC3, WNT4 and STAT6 are associated with tumor invasion, and these genes may become the potential genes for targeted therapy.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jun Li ◽  
Siyuan Li ◽  
Ying Hu ◽  
Guolei Cao ◽  
Siyao Wang ◽  
...  

Objective. We investigated the expression levels of both FOSL2 mRNA and protein as well as evaluating DNA methylation in the blood of type 2 diabetes mellitus (T2DM) Uyghur patients from Xinjiang. This study also evaluated whether FOSL2 gene expression had demonstrated any associations with clinical and biochemical indicators of T2DM. Methods. One hundred Uyghur subjects where divided into two groups, T2DM and nonimpaired glucose tolerance (NGT) groups. DNA methylation of FOSL2 was also analyzed by MassARRAY Spectrometry and methylation data of individual units were generated by the EpiTyper v1.0.5 software. The expression levels of FOS-like antigen 2 (FOSL2) and the protein expression levels were analyzed. Results. Significant differences were observed in mRNA and protein levels when compared with the NGT group, while methylation rates of eight CpG units within the FOSL2 gene were higher in the T2DM group. Methylation of CpG sites was found to inversely correlate with expression of other markers. Conclusions. Results show that a correlation between mRNA, protein, and DNA methylation of FOSL2 gene exists among T2DM patients from Uyghur. FOSL2 protein and mRNA were downregulated and the DNA became hypermethylated, all of which may be involved in T2DM pathogenesis in this population.


2004 ◽  
Vol 32 (2) ◽  
pp. 449-466 ◽  
Author(s):  
S Bauersachs ◽  
S Rehfeld ◽  
SE Ulbrich ◽  
S Mallok ◽  
K Prelle ◽  
...  

The oviduct epithelium undergoes marked morphological and functional changes during the oestrous cycle. To study these changes at the level of the transcriptome we did a systematic gene expression analysis of bovine oviduct epithelial cells at oestrus and dioestrus using a combination of subtracted cDNA libraries and cDNA array hybridisation. A total of 3072 cDNA clones of two subtracted libraries were analysed by array hybridisation with cDNA probes derived from six cyclic heifers, three of them slaughtered at oestrus and three at dioestrus. Sequencing of cDNAs showing significant differences in their expression levels revealed 77 different cDNAs. Thirty-seven were expressed at a higher level at oestrus, for the other 40 genes expression levels were higher at dioestrus. The identified genes represented a variety of functional classes. During oestrus especially genes involved in the regulation of protein secretion and protein modification, and mRNAs of secreted proteins, were up-regulated, whereas during dioestrus particularly transcripts of genes involved in transcription regulation showed a slight up-regulation. The concentrations of seven selected transcripts were quantified by real-time RT-PCR to validate the cDNA array hybridisation data. For all seven transcripts, RT-PCR results were in excellent correlation (r>0.92) with the results obtained by array hybridisation. Our study is the first to analyse changes in gene expression profiles of bovine oviduct epithelial cells during different stages of the oestrous cycle, providing a starting point for the clarification of the key transcriptome changes in these cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1062-1062
Author(s):  
Fortunato Morabito ◽  
Marta Lionetti ◽  
Giovanna Cutrona ◽  
Katia Todoerti ◽  
Serena Matis ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (B-CLL) is a heterogeneous disease; some patients have a rapidly progressing disease and others exhibit an indolent course and survive for many years without treatment. Mutation status of IgVH genes utilized by CLL cells represents a very reliable predictor of clinical outcome in B-CLL, but its analysis is expensive and beyond the capacities of most diagnostic laboratories. To identify surrogate markers we performed a gene expression profiling analysis of CD19+ purified cells from 80 B-CLL untreated patients in Binet stage A, by means of Affymetrix GeneChip® HGU133A arrays. The comparison of 46 IgVH-unmutated versus 34 mutated samples using the Prediction Analysis of Microarrays software identified 78 differentially expressed probes, specific for 59 well-characterized genes. Specifically, 43 genes had a higher and 16 genes a lower average expression in the IgVH unmutated group. These genes are involved in cellular functions, including cell cycle regulation (SEPT7, SEPT10, CDK2AP1), cell proliferation (SLAMF1, LDOC1), apoptosis (CD63, IFT57, P2RX1, RNF130, TNFRSF1B), cell adhesion (CNTNAP2, C1orf38, PCDH9), immune response (ZAP70, IFI44), signal transduction (AKAP13, RASGRP1, USP6NL, TGFBR3, AKAP12), lipid metabolism and fatty-acid degradation (FADS3, LPL, LASS6), cell-cell signalling (FCRL2), phospholipid biosynthetic process (AYTL2), regulation of circadian rhythm (EGR3, CRY1, OPN3), DNA-dependent regulation of transcription (MYBL1, NR4A2, NRIP1, ZBTB20), muscle development (VAMP5, SRI, DMD). The expression signature identified in the proprietary database was then validated by means of a meta-analysis of a publicly available gene expression dataset of 100 B-CLL (Haslinger et al., 2005), showing classification accuracy measures leading to a global classification rate of 82.93% of the test set and thus suggesting the strength of the identified expression signature. The expression levels of 11 genes (LPL, ZBTB20, ZAP70, CRY1, COBLL1, SEPT10, LDOC1, TNFRSF1B, DMD, SRI, NRIP1) were confirmed by means of quantitative real-time PCR (Q-RT-PCR) in a subset of 40 CLL patients. The prognostic impact for Time To Treatment (TTT) of the 59 candidate genes of our classifier model was investigated in 77 patients. Forty-nine (36.4%) of these received treatment after a median follow up of 4 years. As expected, patients with unmutated IgVH genes had a risk of therapy requirement that was about 3 times higher (HR: 3.1,95% C.I. 1.6–5.8, p<0.0001) than those with mutated IgVH. Based on microarray expression levels, 43/59 genes significantly predicted TTT with a HR ranging from 1.5 (LPL gene) to 4.2 (SRI gene) (value for ZAP-70 = HR: 1.9, 95% C.I. 1.0–3.4, p=0.039). The same analysis performed in the panel of the 11 genes validated by Q-RT-PCR revealed 4 candidate genes which significantly predicted TTT. Specifically, Cox univariate analysis confirmed ZAP-70 as a predictor of disease outcome and underscored the prognostic role of the LPL, TNFRSF1B and CRY1 genes. The predictive power of the novel putative surrogate markers for the IgVH mutation status is now being further validated at protein expression level.


2009 ◽  
Vol 88 (5) ◽  
pp. 400-408 ◽  
Author(s):  
S.P. Barros ◽  
S. Offenbacher

Genetic information is encoded not only by the linear sequence of DNA, but also by epigenetic modifications of chromatin structure that include DNA methylation and covalent modifications of the proteins that bind DNA. These “epigenetic marks” alter the structure of chromatin to influence gene expression. Methylation occurs naturally on cytosine bases at CpG sequences and is involved in controlling the correct expression of genes. DNA methylation is usually associated with triggering histone deacetylation, chromatin condensation, and gene silencing. Differentially methylated cytosines give rise to distinct patterns specific for each tissue type and disease state. Such methylation-variable positions (MVPs) are not uniformly distributed throughout our genome, but are concentrated among genes that regulate transcription, growth, metabolism, differentiation, and oncogenesis. Alterations in MVP methylation status create epigenetic patterns that appear to regulate gene expression profiles during cell differentiation, growth, and development, as well as in cancer. Environmental stressors including toxins, as well as microbial and viral exposures, can change epigenetic patterns and thereby effect changes in gene activation and cell phenotype. Since DNA methylation is often retained following cell division, altered MVP patterns in tissues can accumulate over time and can lead to persistent alterations in steady-state cellular metabolism, responses to stimuli, or the retention of an abnormal phenotype, reflecting a molecular consequence of gene-environment interaction. Hence, DNA epigenetics constitutes the main and previously missing link among genetics, disease, and the environment. The challenge in oral biology will be to understand the mechanisms that modify MVPs in oral tissues and to identify those epigenetic patterns that modify disease pathogenesis or responses to therapy.


Author(s):  
Federica Giambò ◽  
Gian Leone ◽  
Giuseppe Gattuso ◽  
Roberta Rizzo ◽  
Alessia Cosentino ◽  
...  

Environmental or occupational exposure to pesticides is considered one of the main risk factors for the development of various diseases. Behind the development of pesticide-associated pathologies, there are both genetic and epigenetic alterations, where these latter are mainly represented by the alteration in the expression levels of microRNAs and by the change in the methylation status of the DNA. At present, no studies have comprehensively evaluated the genetic and epigenetic alterations induced by pesticides; therefore, the aim of the present study was to identify modifications in gene miRNA expression and DNA methylation useful for the prediction of pesticide exposure. For this purpose, an integrated analysis of gene expression, microRNA expression, and DNA methylation datasets obtained from the GEO DataSets database was performed to identify putative genes, microRNAs, and DNA methylation hotspots associated with pesticide exposure and responsible for the development of different diseases. In addition, DIANA-miRPath, STRING, and GO Panther prediction tools were used to establish the functional role of the putative biomarkers identified. The results obtained demonstrated that pesticides can modulate the expression levels of different genes and induce different epigenetic alterations in the expression levels of miRNAs and in the modulation of DNA methylation status.


2007 ◽  
Vol 19 (1) ◽  
pp. 249
Author(s):  
X. S. Cui ◽  
X. H. Shen ◽  
X. Y. Li ◽  
J. M. Kim ◽  
N. H. Kim

Dicer is an RNAse III enzyme that is related to the generation of the microRNAs involved in the gene silencing pathway. In order to obtain insight into the role of Dicer in early embryo development, we first evaluated its gene expression levels in mouse oocytes and embryos during in vitro development. The relative abundance of Dicer1 transcripts was established by real-time RT-PCR using the 2-ddCt method. H2a was applied as an internal standard to normalize the real-time RT-PCR reaction efficiency and quantify Dicer1 mRNA. Relatively high expression levels of mRNA in germinal vesicle-stage oocytes steadily decreased up to the 2-cell stage embryo, and then expression remained during morulae and blastocyst formation. Protein synthesis of Dicer was also observed in the mouse oocytes and early embryos. Specific silencing of mRNA expression and protein synthesis by RNA interference (siRNA) did not inhibit developmental events up to the blastocyst (BL) stage. However, Dicer1 siRNA reduced (P <0.05) total nuclei numbers in the BL-stage embryos (Dicer1: 77.2�4.2 vs. control: 62.7�3.1). Real-time RT-PCR also confirmed that, following Dicer1 siRNA microinjection into zygotes, transcription levels of several non-target genes, Cdc42, Cdh1, Dbc2, ILK, Tuba1, Plat, and Tie1, were not changed in blastocyst-stage embryos. However, selected transcription factors, Pou5f1 (P <0.01), Nanog (P <0.005), and Sox2 (P <0.01), in blastocysts were significantly down-regulated. Additionally, POU5F1 protein synthesis was also reduced. Using Applied Biosystem microarray technology, we compared gene expression profiles in control and Dicer1 siRNA microinjected blastocysts. This technique confirmed that 397 or 737 of 16354 genes were up- or down-regulated, respectively, following siRNA microinjection (P <0.05), including 52 transcription factors. The results suggest that expression of Dicer regulates gene expression at the blastocyst-stage embryo for cell fate, possibly by the transcription control.


2014 ◽  
Vol 32 (3_suppl) ◽  
pp. 249-249
Author(s):  
Toru Utsunomiya ◽  
Mitsuo Shimada ◽  
Satoru Imura ◽  
Yuji Morine ◽  
Tetsuya Ikemoto ◽  
...  

249 Background: Percentage of patients with non-B non-C (NBNC) hepatocellular carcinoma (HCC) is rapidly increasing in Japan. We have previously shown that miRNA expression profiles in non-tumor liver tissues of patients with NBNC-HCC are different from those of patients with HBV-HCC and HCV-HCC. Moreover, we have recently reported that specific miRNA expression profiles in non-tumor liver tissues can predict a risk of multicentric recurrence after hepatectomy for HCC (Hepatol Res, 2013). In this study, we performed the genome-wide analysis of aberrant DNA methylation in non-tumor liver tissues of patients with NBNC-HCC. Methods: We divided the 23 patients, who underwent hepatectomy, into 3 groups; NBNC (HBcAb-, n=7), NBNC (HBcAb+, n=8), and normal control (NC, n=8). We analyzed DNA methylation status in fresh-frozen non-tumor liver tissues using Infinium Human Methylation 450 Bead Chip (illumina). Gene-expression levels of several identified genes were analyzed by quantitative RT-PCR to validate the correlation between DNA methylation status and gene-expressions. Results: We identified 87 differentially methylated genes in HBcAb- liver tissues, and 603 genes in HBcAb+ liver tissues in comparison to NC liver tissues (Beta value>0.2, P<0.05). Thirty CpG sites were commonly hyper- or hypo-methylated in both HBcAb- and HBcAb+ livers. High percentages of aberrant DNA methylation were observed in gene body. One hypermethylated gene (Lrig1, an intestinal stem cell marker that functions as a tumor suppressor) was confirmed to be down-regulated in its gene-expression level by quantitative RT-PCR. One hypomethylated gene (LEF1, a molecule enhancing hepatocarcinogenesis though Wnt/beta-catenin signaling) was also confirmed to be up-regulated. Ingenuity Pathway Analysisrevealed the association of Wnt/beta-catenin signaling with aberrant DNA methylation status. Conclusions: Genome-wide analysis of aberrant DNA methylation in non-tumor liver tissues may provide not only molecular mechanisms of epigenetic modulation during hepatocarcinogenesis but also early molecular diagnosis in patients with NBNC-HCC.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Elina Nikkola ◽  
Arthur Ko ◽  
Mark J Connolly ◽  
Yinn Cher Ooi ◽  
Päivi Pajukanta ◽  
...  

Background: Remote ischemic conditioning (RIC) is a phenomenon by which brief periods of sublethal ischemia in one tissue confers protection from ischemia to distant tissues. We hypothesize that RIC triggers a cascade of integrated gene expression and methylation changes, leading to neuroprotection in subarachnoidal hemorrhage (SAH) patients. Our goal was to identify and compare changes in DNA methylation and gene expression profiles before and after RIC. Methods: Patients enrolled in a clinical trial of RIC after SAH, receiving RIC by limb cuff transient ischemia sessions. Fourteen SAH patients (64% female, mean age 51) underwent 3-4 RIC sessions and gave a blood sample before and after RIC, seven days apart. The transcriptome analysis of whole blood was performed using paired-end, 100-bp RNA-sequencing. We employed STAR and HTSeq to align and count reads; EdgeR to normalize the counts and detect differential expression (DE); and David to search for functional categories of the DE genes. Genome-wide DNA methylation profiles were assessed using reduced representation bisulfite sequencing (RRBS); Bismark with Bowtie to align the RRBS data, and the differential methylation analysis package (DMAP) to call the methylation status of CpG sites. Bedtools was used to overlap the DE genes with differentially methylated regions. Results: Of the 12,411 genes passing QC, 168 genes were differentially expressed after RIC (FDR<0.05). These genes were enriched for pathways involving mitosis and nuclear division (P50% after RIC in at least one individual. Of the 8,069 sites, 723 were differentially methylated (Bonferroni P<0.05). Our overlap analysis showed that 88 of the significantly altered methylation sites resided in 39 DE genes, including CEACAM8 and CRISP3, both implicated previously for stroke. Conclusions: Our data suggest that RIC alters expression of a specific set of genes involved in stroke via changes in regional DNA methylation. Further studies are warranted to replicate these pilot results.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Julia C. Chen ◽  
Mardonn Chua ◽  
Raymond B. Bellon ◽  
Christopher R. Jacobs

Osteogenic lineage commitment is often evaluated by analyzing gene expression. However, many genes are transiently expressed during differentiation. The availability of genes for expression is influenced by epigenetic state, which affects the heterochromatin structure. DNA methylation, a form of epigenetic regulation, is stable and heritable. Therefore, analyzing methylation status may be less temporally dependent and more informative for evaluating lineage commitment. Here we analyzed the effect of mechanical stimulation on osteogenic differentiation by applying fluid shear stress for 24 hr to osteocytes and then applying the osteocyte-conditioned medium (CM) to progenitor cells. We analyzed gene expression and changes in DNA methylation after 24 hr of exposure to the CM using quantitative real-time polymerase chain reaction and bisulfite sequencing. With fluid shear stress stimulation, methylation decreased for both adipogenic and osteogenic markers, which typically increases availability of genes for expression. After only 24 hr of exposure to CM, we also observed increases in expression of later osteogenic markers that are typically observed to increase after seven days or more with biochemical induction. However, we observed a decrease or no change in early osteogenic markers and decreases in adipogenic gene expression. Treatment of a demethylating agent produced an increase in all genes. The results indicate that fluid shear stress stimulation rapidly promotes the availability of genes for expression, but also specifically increases gene expression of later osteogenic markers.


Sign in / Sign up

Export Citation Format

Share Document