scholarly journals Induction of virus-specific effector immune cell response limits virus replication and severe disease in mice infected with non-lethal West Nile virus Eg101 strain

2015 ◽  
Vol 12 (1) ◽  
Author(s):  
Mukesh Kumar ◽  
Kelsey Roe ◽  
Maile O’Connell ◽  
Vivek R. Nerurkar
Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1681
Author(s):  
Lucia Sophie Kilian ◽  
Derk Frank ◽  
Ashraf Yusuf Rangrez

Chronic inflammation, the activation of immune cells and their cross-talk with cardiomyocytes in the pathogenesis and progression of heart diseases has long been overlooked. However, with the latest research developments, it is increasingly accepted that a vicious cycle exists where cardiomyocytes release cardiocrine signaling molecules that spiral down to immune cell activation and chronic state of low-level inflammation. For example, cardiocrine molecules released from injured or stressed cardiomyocytes can stimulate macrophages, dendritic cells, neutrophils and even T-cells, which then subsequently increase cardiac inflammation by co-stimulation and positive feedback loops. One of the key proteins involved in stress-mediated cardiomyocyte signal transduction is a small GTPase RhoA. Importantly, the regulation of RhoA activation is critical for effective immune cell response and is being considered as one of the potential therapeutic targets in many immune-cell-mediated inflammatory diseases. In this review we provide an update on the role of RhoA at the juncture of immune cell activation, inflammation and cardiac disease.


2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi137-vi137
Author(s):  
Amber Giles ◽  
Leonard Nettey ◽  
Thomas Liechti ◽  
Margaret Beddall ◽  
Elizabeth Vera ◽  
...  

Critical Care ◽  
2018 ◽  
Vol 22 (1) ◽  
Author(s):  
Ivan Göcze ◽  
Katharina Ehehalt ◽  
Florian Zeman ◽  
Paloma Riquelme ◽  
Karin Pfister ◽  
...  

2018 ◽  
Vol 12 (10) ◽  
pp. e0006886 ◽  
Author(s):  
Agathe M. G. Colmant ◽  
Sonja Hall-Mendelin ◽  
Scott A. Ritchie ◽  
Helle Bielefeldt-Ohmann ◽  
Jessica J. Harrison ◽  
...  

1998 ◽  
Vol 76 (10) ◽  
pp. 2694 ◽  
Author(s):  
K E Saker ◽  
V G Allen ◽  
J Kalnitsky ◽  
C D Thatcher ◽  
W S Swecker ◽  
...  

2004 ◽  
Vol 78 (14) ◽  
pp. 7737-7747 ◽  
Author(s):  
Brenda L. Fredericksen ◽  
Maria Smith ◽  
Michael G. Katze ◽  
Pei-Yong Shi ◽  
Michael Gale

ABSTRACT Recent outbreaks of West Nile Virus (WNV) have been associated with an increase in morbidity and mortality in humans, birds, and many other species. We have initiated studies to define the molecular mechanisms by which a recent pathogenic isolate of WNV evades the host cell innate antiviral response. Biochemical and microarray analyses demonstrated that WNV induced the expression of beta interferon (IFN-β) and several IFN-stimulated genes late in infection of cultured human cells. The late expression of these antiviral genes was due to the delayed activation of the transcription factor IFN regulatory factor 3 (IRF-3). Despite this host response, WNV was still able to replicate efficiently. The effect of the IRF-3 pathway on WNV replication was assessed by examining virus replication and spread in cultures of wild-type or IRF-3-null mouse embryo fibroblasts. The absence of IRF-3 was marked by a significant increase in plaque size and a sustained production of infectious particles. Although the activation of the IRF-3 pathway was not sufficient to block virus replication, our results suggest that IRF-3 target genes function to constrain WNV infection and limit cell-to-cell virus spread.


Sign in / Sign up

Export Citation Format

Share Document