scholarly journals CC and CXC chemokines play key roles in the development of polyomaviruses related pathological conditions

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Mohammad Hassan Mohammadi ◽  
Ashraf Kariminik

AbstractIt has been reported that polyomaviruses are the microbes which can be a cause of several human pathological conditions including cancers, nephropathy, progressive multifocal leukoencephalopathy and gynaecological disease. Although investigators proposed some mechanisms used by the viruses to induce the disorders, the roles played by chemokines in the pathogenesis of polyomaviruses infections are yet to be clarified. This review article investigated recent studies regarding the roles played by chemokines in the pathogenesis of the polyomaviruses infections. The research in the literature revealed that CXC chemokines, including CXCL1, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12 and CXCL16, significantly participate in the pathogenesis of polyomaviruses. CC chemokines, such as CCL2, CCL5 and CCL20 also participate in the induction of the pathological conditions. Therefore, it appears that CXC chemokines may be considered as the strategic factors involved in the pathogenesis of polyomaviruses.

Author(s):  
А.А. Газданова ◽  
В.Г. Кукес ◽  
О.К. Парфенова ◽  
Н.Г. Сидоров ◽  
А.В. Перков ◽  
...  

Миостатин - белок, принадлежащий к классу миокинов, семейству трансформирующих факторов роста β (TGF-β). В обзорной статье, анализирующей данные литературы, показана ключевая роль миостатина в развитии старческой саркопении и кахексии при различных патологических состояниях, таких как рак, ХСН, ХБП, ХОБЛ и др. В статье рассматривается структура миостатина, подробная схема синтеза и его активации, механизм действия как негативного регулятора роста и дифференцировки мышц при этих патологических состояниях. Выделены основные физиологические свойства и клиническое значение. Рассмотрены экзогенные и эндогенные факторы, регулирующие экспрессию миостатина, и возможные механизмы их действия. Myostatin is a protein belonging to the myokine class, the family of transforming growth factors β (TGF-β). The review article, based on the analysis of literature data, shows the key role of myostatin in the development of senile sarcopenia and cachexia in various pathological conditions, such as cancer, chronic heart failure, chronic renal failure, COPD, etc. The article discusses the structure of myostatin, provides a detailed diagram of the synthesis and activation of myostatin, the ways of implementing the mechanism of action as a negative regulator of muscle growth and differentiation in these pathological conditions. The main physiological properties and clinical significance are highlighted. Exogenous and endogenous factors regulating myostatin expression and possible mechanisms of their action are considered.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Hesam Saghaei Bagheri ◽  
Farhad Bani ◽  
Savas Tasoglu ◽  
Amir Zarebkohan ◽  
Reza Rahbarghazi ◽  
...  

Abstract The existence of active crosstalk between cells in a paracrine and juxtacrine manner dictates specific activity under physiological and pathological conditions. Upon juxtacrine interaction between the cells, various types of signaling molecules and organelles are regularly transmitted in response to changes in the microenvironment. To date, it has been well-established that numerous parallel cellular mechanisms participate in the mitochondrial transfer to modulate metabolic needs in the target cells. Since the conception of stem cells activity in the restoration of tissues’ function, it has been elucidated that these cells possess a unique capacity to deliver the mitochondrial package to the juxtaposed cells. The existence of mitochondrial donation potentiates the capacity of modulation in the distinct cells to achieve better therapeutic effects. This review article aims to scrutinize the current knowledge regarding the stem cell’s mitochondrial transfer capacity and their regenerative potential.


2019 ◽  
Vol 13 (2) ◽  
pp. 134-146 ◽  
Author(s):  
I. Ghanem ◽  
A. Massaad ◽  
A. Assi ◽  
M. Rizkallah ◽  
A. J. Bizdikian ◽  
...  

Background A thorough review of the available orthopaedic literature shows significant controversies, inconsistencies and sparse data regarding the terminology used to describe foot deformities. This lack of consensus on terminology creates confusion in professional discussions of foot anatomy, pathoanatomy and treatment of deformities. The controversies apply to joint movements as well as static relationships between the bones. Description The calcaneopedal unit (CPU) is a specific anatomical and physiological entity, represented by the entire foot excepted the talus. The calcaneus, midfoot and forefoot are solidly bound by three strong ligaments that create a unit that articulates with the talus. The movement of the CPU is complex, as it rotates under the talus, around the axis of Henke that coincides with the talo-calcaneal ligament of Farabeuf. This calcaneopedal unit is deformable. It is compared with a twisted plate, able to adapt to many physiological situations in standing position, in order to acheive a plantigrade position. Moreover, the calcaneopedal unit and the talo-tibiofibular complex are interdependent; rotation of the latter produces morphologic modifications inside the former and vice versa. Purpose This paper is a review article of this concept and of its physiopathological applications.


2020 ◽  
pp. 459-462
Author(s):  
Harold E. Vasquez ◽  
Yeider A. Durango-Espinosa ◽  
Ezequiel Garcia-Ballestas ◽  
B.V. Murlimanju ◽  
Andrei Fernandes Joaquim ◽  
...  

Cerebrospinal fluid (CSF) is largely (70-80%) produced by the choroids plexus of the ventricles and is considered as the plasma ultrafiltrate. While CSF formation, circulation, and composition appear to be physiological and physical, its absorption appears to be mainly physical. The formation, composition, circulation, absorption, and changes in pathological conditions of CSF are discussed briefly in this review article. The CSF pressure dynamics studies provide information about the tightness, elastance, or outflow resistance of the CSF in the CNS. We believe that the present study shall help to provide essential details of CSF physiology which are important to many disciplines including radiology, neurology, and neurosurgery.


2020 ◽  
Vol 21 (18) ◽  
pp. 6861
Author(s):  
Jae Ang Sim ◽  
Jaehong Kim ◽  
Dongki Yang

The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.


Author(s):  
Tiziano Marzo ◽  
Diego La Mendola

: Angiogenesis is a key process allowing the formation of blood vessels. It is crucial for all the tissue and organs, ensuring their function and growth. Angiogenesis is finely controlled by several mechanisms involving complex interactions between pro- or antiangiogenic factors and an imbalance in this control chain may result in pathological conditions. Metals as copper, zinc and iron cover an essential role in regulating angiogenesis, thus therapies having physiological metals as target have been proposed. Also, some complexes of heavier metal ions (e.g Pt, Au, Ru) are currently used as established or experimental anticancer agents targeting genomic or non-genomic targets. These molecules may affect the angiogenic mechanisms determining different effects that have been only poorly and non-systematically investigated so far. Accordingly, in this review article we aim to recapitulate the impact on the angiogenic process of some reference anticancer drugs, and how it is connected to the overall pharmacological effects. Also, we highlight how the activity of these drugs can be related to the role of biological essential metal ions. Overall, this may allow a deeper description and understanding of the antineoplastic activity of both approved or experimental metal complexes, providing important insights for the synthesis of new inorganic drugs able to overcome resistance and recurrence phenomena.


2020 ◽  
Vol 58 (2) ◽  
pp. 162-177 ◽  
Author(s):  
Vesna Gorenjak ◽  
Alexandros M. Petrelis ◽  
Maria G. Stathopoulou ◽  
Sophie Visvikis-Siest

AbstractTelomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Aruna Bhatia ◽  
Harmandeep Kaur Sekhon ◽  
Gurpreet Kaur

The functioning of the immune system of the body is regulated by many factors. The abnormal regulation of the immune system may result in some pathological conditions. Sex hormones of reproductive system are one of the major factors that regulate immune system due to the presence of hormone receptors on immune cells. The interaction of sex hormones and immune cells through the receptors on these cells effect the release of cytokines which determines the proliferation, differentiation, and maturation of different types of immunocytes and as a result the outcome of inflammatory or autoimmune diseases. The different regulations of sex hormones in both sexes result in immune dimorphism. In this review article the mechanism of regulation of immune system in different sexes and its impact are discussed.


Author(s):  
R. F. Gasanov ◽  
I. V. Makarov ◽  
D. A. Emelina

The review article reveals the problems of hyperkinetic and anxiety disorders comorbidity. It is shown that these disorders have common etiological and pathogenetic factors, as well as clinical symptoms. In addition, the therapy of both pathological conditions has similar targets, which suggests that the hyperkinetic disorder and anxiety disorders of childhood can be called not only concomitant, but also comorbid.


Sign in / Sign up

Export Citation Format

Share Document