scholarly journals Characterizing the effects of different chemicals on stem bending of cut snapdragon flower

Plant Methods ◽  
2022 ◽  
Vol 18 (1) ◽  
Author(s):  
May Thu Soe ◽  
Aung Htay Naing ◽  
Soo Rin Kim ◽  
Chang Kil Kim

Abstract Background This study investigated the effects of ethylene release compounds (ethephon), ethylene-action inhibitors (silver thiosulfate: STS), and nitric oxide donor (sodium nitroprusside: SNP) on stem bending of snapdragon flowers. Moreover, the effects of plant growth supplements [6-benzyladenine (BA), gibberellic acid 3 (GA3), and calcium chloride (CaCl2)] on the stem bending were also extensively investigated. Results Ethephon completely prevented stem bending until 9 days after treatment (9 DAT). STS exhibited the highest bending rate, while SNP did not significantly affect the bending compared to the controls. The bending results were associated with the results of stem curvature, relative shoot elongation, ethylene production, and lignin content, that are involved in the stem bending mechanism. This was proven by the expression analysis of genes involved in ethylene and lignin biosynthetic pathways. The addition of plant growth supplements slightly or significantly delayed stem bending in the treatments (control, SNP, and STS) and significantly reduced petal senescence in ethephon at 9 DAT. Conclusion These results show the preventive role of ethephon in the stem bending of cut snapdragon. Moreover, the combination of ethephon with supplements also provided information that could guide the development of strategies to delay stem bending in other cut flowers that undergo serious bending during a short vase life.

2021 ◽  
Vol 12 ◽  
Author(s):  
Aung Htay Naing ◽  
May Thu Soe ◽  
Jeong Hyun Yeum ◽  
Chang Kil Kim

This study investigated whether ethylene is involved in the stem-bending mechanism of three different snapdragon cultivars ‘Asrit Red’, ‘Asrit Yellow’, and ‘Merryred Pink’, by treating their cut stems with an ethylene-releasing compound (ethephon), an ethylene-action inhibitor [silver thiosulfate (STS)], and distilled water (as the control). Ethephon completely prevented stem bending in all cultivars, whereas STS exhibited a higher bending rate compared with the control. The bending rates were influenced by several factors, such as the degree of stem curvature, relative shoot elongation, ethylene production, and lignin content, indicating their involvement in the stem-bending mechanism of the cultivars. The analysis of the expression of genes involved in the ethylene and lignin biosynthetic pathways also supported the importance of lignin and ethylene in the stem-bending mechanism. Taken together, as ethephon completely prevented stem bending of the three snapdragon cultivars, this study suggested that ethylene acts as a negative regulator of the stem-bending mechanism of snapdragon cultivars, and the information will be valuable for the prevention of stem bending in other commercially important ornamental flowers.


HortScience ◽  
2015 ◽  
Vol 50 (9) ◽  
pp. 1365-1369 ◽  
Author(s):  
Shunzhao Sui ◽  
Jianghui Luo ◽  
Daofeng Liu ◽  
Jing Ma ◽  
Weiting Men ◽  
...  

Wintersweet (Chimonanthus praecox) is a woody garden plant with fragrant flowers, which blooms in deep winter. The vase life of fresh cut flowers is 8–9 days. We applied ethylene and 1-methylcyclopropene (1-MCP; an ethylene action inhibitor) to test the role of ethylene in flower opening and senescence. In addition, abscisic acid (ABA), gibberellic acid (GA3), two cytokinins, 6-benzylaminopurine (6-BA), and zeatin (ZT) were also applied. The expression pattern of CpSRG1, a senescence-related gene, was analyzed. Ethylene treatment accelerated flower opening and senescence, decreasing vase life by 2.1 days. It also decreased flower break strength, indicating the induction of abscission. 1-MCP slowed opening, delayed senescence, and prolonged vase life by 2.6 days. Ethylene dramatically induced the expression of the CpSRG1 gene, while 1-MCP suppressed it. ZT promoted flower opening and increased vase life by 1.6 days. It suppressed the expression of CpSRG1. 6-BA, GA3, or ABA had no significant effect on flower opening and senescence of wintersweet.


Author(s):  
Thắng Thanh Trần ◽  
Triều Phương Hoàng ◽  
Hương Thanh Trần

Chrysanthemum indicum cultivar Sakura is one of the daisy cultivars. It is beautiful, but the vase life of cutting flowers is very short. The decrease in flower quality during storage and transportation is a big problem in the flower export. In this study, the morphological, physiological, and biochemical changes during the vase life of cutting flowers were analyzed. The effects of plant growth regulators and sucrose at different concentrations on the vase life of cut flowers were investigated. The vase life of Sakura cutting flowers includes two stages: (1) the growing and blooming of flower, (2) senescence of cutting flowers. During the growing and blooming, the color of disk flowers changed from green to yellow, and the ray flowers continued to expand the dimension leading to an increase in the diameter of the head flower. The senescence of cutting flowers was initiated by the reduction of chlorophyll content in the leaf, which was located at the base. Then, the ray flowers were discolored. In the senescence stage, the respiration rate and the content of the abscisic acid of head flower increased continuously. In contrast, the water absorption, the content of starch, total sugar, salicylic acid, auxin, cytokinin, and gibberellin decreased strongly. The treatment of 10 g/L sucrose, 2 mg/L NAA, 5 mg/L BA, and 20 mg/L salicylic acid in 24 hours extended the vase life of Sakura cutting flowers and the diameter of the head flower.  


HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 148-150 ◽  
Author(s):  
Fisun G. Çelikel ◽  
Michael S. Reid

The respiration of cut flowers of gerbera (Gerbera jamesonii H. Bolus ex Hook.f. `Vesuvio') and sunflower (Helianthus annuus L.) increased exponentially with increasing storage temperature. Poststorage vase life and negatively gravitropic bending of the neck of the flowers were both strongly affected by simulated transport at higher temperatures. Vase life and stem bending after dry storage showed highly significant linear relationships (negative and positive, respectively) with the rate of respiration during storage. The data indicate the importance of maintaining temperatures close to the freezing point during commercial handling and transport of these important commercial cut-flower crops for maximum vase life.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1704
Author(s):  
Sabir Aziz ◽  
Adnan Younis ◽  
Muhammad Jafar Jaskani ◽  
Rashid Ahmad

The short vase life is the major problem in the cut flower industry. This study was conducted to evaluate the role of different vase solutions and oils in enhancing the quality and vase life of lily cut flowers. Salicylic acid (SA; 300 mg L−1), citric acid (CA; 300 mg L−1), gibberellic acid (GA; 100 mg L−1), and clove oil (200 mg L−1) were used as vase solutions. These treatments were applied after pulsing with preoptimized sucrose 5%. It was found that SA (300 mg L−1) + sucrose (5%) improved the performance of cut flowers, which further increased the longevity of all tested lily cultivars up to eight days and the longest vase life by 17.6 days. The maximum change in fresh weight (5.60 g), increase in chlorophyll contents (3.2 SPAD value), highest protein content (6.1 mg g−1 FW), and increase in the activities of superoxide dismutase (SOD) (51.0 U g−1 protein), catalase (CAT) (36.3 U g−1 protein), and peroxidase (POD) (41.6 U g−1 protein), were recorded with the CA (300 mg L−1) + sucrose 5%. Among the cultivars, “Zambesi” performed best compared to “Sorbonne” and “Caesars”. The maximum anthocyanin contents (198%) were recorded in “Caesars”. In conclusion, among the different preservative solutions, SA performed best to prolong the vase life and quality of lily cut flowers.


Author(s):  
Lucas Cavalcante da Costa ◽  
Fernanda Ferreira de Araujo ◽  
Wellington Souto Ribeiro ◽  
Mirelle Nayana de Sousa Santos ◽  
Fernando Luiz Finger

Abstract The longevity of cut flowers is limited by their ephemeral nature and by multiple stresses. Impairment in water uptake, depletion of stored carbohydrates, increases in both respiratory activity and ethylene production are signatures of flower senescence. A wide range of techniques is available to extend flower preservation, including the use of flower preservative solutions, ethylene action inhibitors, growth regulators, and control of temperature and flower dehydration. The use of sucrose in pulsing solution, or as a component of vase solution, extends the vase life of flowers by either improving water balance and energy or delaying the senescence via reductions in ethylene biosynthesis. Inhibitors of ethylene production and action affect the longevity by extending the vase life of some ethylene-sensitive flowers. Flowers have intense respiratory activity, which may deplete the limited reserves of carbohydrates in the tissues. Lower temperatures markedly reduce both carbon dioxide concentration and ethylene production as well as its action. However, chilling-sensitive flowers, such as bird-of-paradise, heliconia, orchid, and ginger, cannot be stored below 10 to 13°C due to the intense development of tissue discoloration.


2021 ◽  
Vol 27 (4) ◽  
pp. 495-504
Author(s):  
Aehsan ul Haq ◽  
Sumira Farooq ◽  
Mohammad Lateef Lone ◽  
Shazia Parveen ◽  
Foziya Altaf ◽  
...  

Abstract Postharvest senescence is one of the crucial challenges limiting the marketability of cut flowers. Pertinently, recent investigations implicate extensive role of polyamines in regulation of flower senescence. The present study was envisaged to test the efficacy of poylamines in preserving the postharvest quality of Consolida ajacis (C. ajacis) cut spikes. The cut spikes of C. ajacis were subjected to various treatments of polyamines viz, 4 mM Spermine (SPM), 6mM Putrescine (PUT) and 6 mM Spermidine (SPD). A separate set of spikes held in distilled water represented the control. Our results authenticate a significant improvement in vase life of cut spikes of C. ajacis as compared to control. The increment in vase life was commensurate with the higher concentration of sugars, proteins and phenols in the tepal tissues. Polyamines amplified the activity of various antioxidant enzymes viz, superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) to overcome the deleterious effects of reactive oxygen species (ROS). The membrane outflow of tepal tissues was profoundly reduced due to attenuated lipoxygenase (LOX) activity. These findings reveal conspicuous role of polyamines particularly SPM in modulation of flower senescence in cut spikes of C. ajacis.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1371-1372 ◽  
Author(s):  
D. Badiyan ◽  
R.B.H. Wills ◽  
M.C. Bowyer

Snapdragon (Antirrhinum majus L. `Chitchat'), delphinium (Delphinium ajacis L. `Bellisimo'), chrysanthemum (Dendranthema grandiflora RAM. `Regan'), tulip (Tulipa hybrid `Golden Brush'), gerbera (Gerbera jamesonii H. Bolus `Manovale'), oriental lily (Lilium asiaticum L. `Specisiom Simplon'), rose (Rosa hybrid L. `Carnavale') and iris (Iris hollandica Tub. `Blue Magic') cut flower stems were placed at 20 °C in water containing the NO donor compound 2,2'-(hydroxynitrosohydrazino)-bisethanamine (DETA/NO) at 10 and 100 mg·L-1 and after 24 h, transferred to humidified air containing 0.1 μL·L-1 ethylene. Compared with flowers kept in water, the vase life of all eight flowers was extended by DETA/NO with an average extension of about 60% with the range being about 200% for gerbera to 10% for chrysanthemum. DETA/NO appears to have widespread applicability to cut flowers and offers a simple technology to extend vase life.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 503B-503
Author(s):  
R. St.Hill ◽  
D.P. Murr

Recent advances in technology have made the snapdragon, Antirrhinum majus L., a promising florist crop in North America and potentially on the Ontario market. CO2 is a known inhibitor of ethylene action, but its effects tend to be difficult to interpret based on the variable responses of plants to this gas. Recently, a gaseous ethylene analog has been shown to inhibit certain ethylene responses of cut flowers, such as wilting in carnations and flower abscission of cut phlox. This cyclic olefin, 1-methylcyclopropene (1-MCP), is thought to bind irreversibly to the ethylene receptor sites, thereby preventing or delaying ethylene responses. In the experiments undertaken, the potential of CO2 and 1-MCP were investigated for their ability to enhance vase life and to reduce shattering and wilting of snapdragons. Flowers were sealed in ≈0.2-m3 chambers encased in 6-mil polyethylene and exposed to elevated CO2 (5% or 10%) or 1-MCP (20-200 nL/L) for 6 to 24 h at 20 °C. The flowers were then exposed to continuous ethylene of 0-20 μL/L. Following exposure to 5 or 20 μL/L ethylene, 1-MCP reduced shattering ≈2- to 3-fold compared to CO2 treatment. 1-MCP did not prevent the wilting response but delayed it by ≈2 days. CO2-treated flowers exhibited a more rapid decline in net percent open florets from days 3 to 5 post-treatment. Despite the ability of 1-MCP to reduce shattering, in the absence of exposure to continuous ethylene, it has limited effectiveness on wilting compared to CO2.


HortScience ◽  
2013 ◽  
Vol 48 (2) ◽  
pp. 222-226
Author(s):  
Ya-Ching Chuang ◽  
Yao-Chien Alex Chang

The vase life of Eustoma cut flowers can be extended by adding sugars to the vase solution, but the exact role of sugars and how they are translocated in tissues are not clear. Thus, we observed the preserving effect of different sugars in vase solutions on Eustoma and compared sugar concentrations in vase solutions and in the flowers as well as stems and leaves of cut flowers in a solution containing 200 mg·L−1 8-hydroxyquinoline sulfate (8-HQS) with and without 20 g·L−1 sucrose during different flowering stages. Inclusion of glucose, fructose, or sucrose in the vase solution extended the vase life of cut flowers with no significant differences among sugar types. During flower opening, the concentration of added sucrose in the vase solution dropped, and the fresh weight (FW), glucose concentration, and sucrose concentration of flowers in sucrose solutions increased, whereas flowers in solutions without sucrose had lower FW and glucose concentrations. During flower senescence, sugar concentration in the vase solution did not change much, but the FW and sucrose concentrations in all flowers declined, although the FW of sucrose-treated flowers fell more slowly. For stems and leaves in the sucrose solution, sugar concentrations increased during the first 7 days with only glucose slightly declining during senescence, whereas the FW was maintained during the entire vase life. In contrast, FWs of those in the solution without sucrose gradually declined. In conclusion, sucrose in the vase solution promoted flower opening and maintained the water balance of Eustoma cut flowers. Glucose and fructose also extended the vase life, likely in similar ways.


Sign in / Sign up

Export Citation Format

Share Document