scholarly journals Bioconversion variation of ginsenoside CK mediated by human gut microbiota from healthy volunteers and colorectal cancer patients

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yin-Ping Guo ◽  
Li Shao ◽  
Li Wang ◽  
Man-Yun Chen ◽  
Wei Zhang ◽  
...  

Abstract Background Ginsenoside CK (GCK) serves as the potential anti-colorectal cancer (CRC) protopanaxadiol (PPD)-type saponin, which could be mainly bio-converted to yield PPD by gut microbiota. Meanwhile, the anti-CRC effects of GCK could be altered by gut microbiota due to their different diversity in CRC patients. We aimed to investigate the bioconversion variation of GCK mediated by gut microbiota from CRC patients by comparing with healthy subjects. Methods Gut microbiota profiled by 16S rRNA gene sequencing were collected from healthy volunteers and CRC patients. GCK was incubated with gut microbiota in vitro. A LC-MS/MS method was validated to quantify GCK and PPD after incubation at different time points. Results The bioconversion of GCK in healthy subjects group was much faster than CRC group, as well as the yield of PPD. Moreover, significant differences of PPD concentration between healthy subjects group and CRC group could be observed at 12 h, 48 h and 72 h check points. According to 16S rRNA sequencing, the profiles of gut microbiota derived from healthy volunteers and CRC patients significantly varied, in which 12 differentially abundant taxon were found, such as Bifidobacterium, Roseburia, Bacteroides and Collinsella. Spearman’s correlation analysis showed bacteria enriched in healthy subjects group were positively associated with the biotransformation of GCK, while bacteria enriched in CRC group displayed non correlation character. Among them, Roseburia which could secrete β-glycosidase showed the strongest positive association with the bioconversion of GCK. Conclusions The bioconversion of GCK in healthy subjects was much faster than CRC patients mediated by gut microbiota, which might alter the anti-CRC effects of GCK.

2021 ◽  
Author(s):  
Yin-Ping Guo ◽  
Li Shao ◽  
Li Wang ◽  
Man-Yun Chen ◽  
Wei Zhang ◽  
...  

Abstract Background: Ginsenoside CK (GCK) serves as the potential anti-colorectal cancer (CRC) protopanaxadiol (PPD)-type saponin, which could be mainly bio-converted to yield PPD by gut microbiota. Meanwhile, the anti-CRC effects of GCK could be altered by gut microbiota due to its different diversity in CRC patients. We aimed to investigate the bioconversion variation of GCK mediated by gut microbiota from CRC patients by comparing with healthy subjects.Methods: Gut microbiota profiled by 16S rRNA gene sequencing was collected from healthy volunteers and CRC patients. GCK was incubated with gut microbiota in vitro. A LC-MS/MS method was validated to quantify GCK and PPD after incubation at different time points.Results: The bioconversion of GCK in healthy subjects group was much faster than CRC group, as well as the yield of PPD. Moreover, significant difference of PPD concentration between healthy subjects group and CRC group could be observed at 12 h, 48 h and 72 h check points. According to 16S rRNA sequencing, the profiles of gut microbiota derived from healthy volunteers and CRC patients significantly varied, in which 12 differentially abundant taxon were found, such as Bifidobacterium, Roseburia, Bacteroides and Collinsella. Spearman’s correlation analysis showed bacteria enriched in healthy subjects group were positively associated with biotransformation of GCK, while bacteria enriched in CRC group displayed non correlation characters. Among them, Roseburia which could secrete β-glycosidase showed the strongest positive association with the bioconversion of GCK.Conclusion: The bioconversion of GCK in healthy subjects was much faster than CRC patients mediated by gut microbiota, which might alter the anti-CRC effects of GCK.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Musa Saheed Ibrahim ◽  
Beckley Ikhajiagbe

Abstract Background Rice forms a significant portion of food consumed in most household worldwide. Rice production has been hampered by soil factors such as ferruginousity which has limited phosphorus availability; an important mineral component for the growth and yield of rice. The presence of phosphate-solubilizing bacteria (PSB) in soils has been reported to enhance phosphate availability. In view of this, the present study employed three bacteria species (BCAC2, EMBF2 and BCAF1) that were previously isolated and proved P solubilization capacities as inocula to investigate the growth response of rice germinants in an in vitro setup. The bacteria isolates were first identified using 16S rRNA gene sequencing and then applied as inoculum. The inolula were prepared in three concentrations (10, 7.5 and 5.0 ml) following McFarland standard. Viable rice (var. FARO 44) seeds were sown in petri dishes and then inoculated with the three inocula at the different concentrations. The setup was studied for 28 days. Results 16S rRNA gene sequencing identified the isolates as: isolate BCAC2= Bacillus cereus strain GGBSU-1, isolate BCAF1= Proteus mirabilis strain TL14-1 and isolate EMBF2= Klebsiella variicola strain AUH-KAM-9. Significant improvement in rice germination, morphology, physiology and biomass parameters in the bacteria-inoculated setups was observed compared to the control. Germination percentage after 4 days was 100 % in the inoculated rice germinants compared to 65% in the control (NiS). Similarly, inoculation with the test isolates enhanced water-use efficiency by over 40%. The rice seedlings inoculated with Bacillus cereus strain GGBSU-1 (BiS) showed no signs of chlorosis and necrosis throughout the study period as against those inoculated with Proteus mirabilis strain TL14-1 (PiS) and Klebsiella variicola strain AUH-KAM-9 (KiS). Significant increase in chlorophyll-a, chlorophyll-b and alpha amylase was observed in the rice seedlings inoculated with BiS as against the NiS. Conclusion Inoculating rice seeds with Bacillus cereus strain GGBSU-1, Proteus mirabilis strain TL14-1 and Klebsiella variicola strain AUH-KAM-9 in an in vitro media significantly improved growth parameters of the test plant. Bacillus cereus strain GGBSU-1 showed higher efficiency due to a more improved growth properties observed.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shenhai Gong ◽  
Yinglin Feng ◽  
Yunong Zeng ◽  
Huanrui Zhang ◽  
Meiping Pan ◽  
...  

Abstract Background Gut microbiota has been reported to be disrupted by cisplatin, as well as to modulate chemotherapy toxicity. However, the precise role of intestinal microbiota in the pathogenesis of cisplatin hepatotoxicity remains unknown. Methods We compared the composition and function of gut microbiota between mice treated with and without cisplatin using 16S rRNA gene sequencing and via metabolomic analysis. For understanding the causative relationship between gut dysbiosis and cisplatin hepatotoxicity, antibiotics were administered to deplete gut microbiota and faecal microbiota transplantation (FMT) was performed before cisplatin treatment. Results 16S rRNA gene sequencing and metabolomic analysis showed that cisplatin administration caused gut microbiota dysbiosis in mice. Gut microbiota ablation by antibiotic exposure protected against the hepatotoxicity induced by cisplatin. Interestingly, mice treated with antibiotics dampened the mitogen-activated protein kinase pathway activation and promoted nuclear factor erythroid 2-related factor 2 nuclear translocation, resulting in decreased levels of both inflammation and oxidative stress in the liver. FMT also confirmed the role of microbiota in individual susceptibility to cisplatin-induced hepatotoxicity. Conclusions This study elucidated the mechanism by which gut microbiota mediates cisplatin hepatotoxicity through enhanced inflammatory response and oxidative stress. This knowledge may help develop novel therapeutic approaches that involve targeting the composition and metabolites of microbiota.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Durazzi ◽  
Claudia Sala ◽  
Gastone Castellani ◽  
Gerardo Manfreda ◽  
Daniel Remondini ◽  
...  

AbstractIn this paper we compared taxonomic results obtained by metataxonomics (16S rRNA gene sequencing) and metagenomics (whole shotgun metagenomic sequencing) to investigate their reliability for bacteria profiling, studying the chicken gut as a model system. The experimental conditions included two compartments of gastrointestinal tracts and two sampling times. We compared the relative abundance distributions obtained with the two sequencing strategies and then tested their capability to distinguish the experimental conditions. The results showed that 16S rRNA gene sequencing detects only part of the gut microbiota community revealed by shotgun sequencing. Specifically, when a sufficient number of reads is available, Shotgun sequencing has more power to identify less abundant taxa than 16S sequencing. Finally, we showed that the less abundant genera detected only by shotgun sequencing are biologically meaningful, being able to discriminate between the experimental conditions as much as the more abundant genera detected by both sequencing strategies.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1519
Author(s):  
Meinan Chang ◽  
Fengtao Ma ◽  
Jingya Wei ◽  
Junhao Liu ◽  
Xuemei Nan ◽  
...  

Previous studies have shown that Bacillus subtilis natto affects rumen fermentation and rumen microbial community structure, which are limited to detect a few microbial abundances using traditional methods. However, the regulation of B. subtilis natto on rumen microorganisms and the mechanisms of microbiota that affect rumen fermentation is still unclear. This study explored the effects of live and autoclaved B. subtilis natto on ruminal microbial composition and diversity in vitro using 16S rRNA gene sequencing and the underlying mechanisms. Rumen fluid was collected, allocated to thirty-six bottles, and divided into three treatments: CTR, blank control group without B. subtilis natto; LBS, CTR with 109 cfu of live B. subtilis natto; and ABS, CTR with 109 cfu of autoclaved B. subtilis natto. The rumen fluid was collected after 0, 6, 12, and 24 h of fermentation, and pH, ammonia nitrogen (NH3-N), microbial protein (MCP), and volatile fatty acids (VFAs) were determined. The diversity and composition of rumen microbiota were assessed by 16S rRNA gene sequencing. The results revealed LBS affected the concentrations of NH3-N, MCP, and VFAs (p < 0.05), especially after 12 h, which might be attributed to changes in 18 genera. Whereas ABS only enhanced pH and NH3-N concentration compared with the CTR group (p < 0.05), which might be associated with changes in six genera. Supplementation with live B. subtilis natto improved ruminal NH3-N and propionate concentrations, indicating that live bacteria were better than autoclaved ones. This study advances our understanding of B. subtilis natto in promoting ruminal fermentation, providing a new perspective for the precise utilization of B. subtilis natto in dairy rations.


2021 ◽  
Author(s):  
Pei-Qin Cao ◽  
Xiu-Ping Li ◽  
Jian Ou-Yang ◽  
Rong-Gang Jiang ◽  
Fang-Fang Huang ◽  
...  

We evaluated the effects of yellow tea extract on relieving constipation induced by loperamide and evaluated the changes of gut microbiota based on 16S rRNA gene sequencing.


2020 ◽  
Vol 69 (6) ◽  
pp. 854-863
Author(s):  
Catherine O'Reilly ◽  
Órla O’Sullivan ◽  
Paul D. Cotter ◽  
Paula M. O’Connor ◽  
Fergus Shanahan ◽  
...  

Introduction. Management of steroid-refractory ulcerative colitis has predominantly involved treatment with systemic cyclosporine A (CyA) and infliximab. Aim. The purpose of this study was to assess the effect of using a colon-targeted delivery system CyA formulation on the composition and functionality of the gut microbiota. Methodology. Ex vivo faecal fermentations from six healthy control subjects were treated with coated minispheres (SmPill) with (+) or without (−) CyA and compared with a non-treated control in a model colon system. In addition, the in vivo effect of the SmPill+CyA formulation was investigated by analysing the gut microbiota in faecal samples collected before the administration of SmPill+CyA and after 7 consecutive days of administration from eight healthy subjects who participated in a pilot study. Results. Analysis of faecal samples by 16S rRNA gene sequencing indicated little variation in the diversity or relative abundance of the microbiota composition before or after treatment with SmPill minispheres with or without CyA ex vivo or with CyA in vivo. Short-chain fatty acid profiles were evaluated using gas chromatography, showing an increase in the concentration of n-butyrate (P=0.02) and acetate (P=0.32) in the faecal fermented samples incubated in the presence of SmPill minispheres with or without CyA. This indicated that increased acetate and butyrate production was attributed to a component of the coated minispheres rather than an effect of CyA on the microbiota. Butyrate and acetate levels also increased significantly (P=0.05 for both) in the faecal samples of healthy individuals following 7 days’ treatment with SmPill+CyA in the pilot study. Conclusion. SmPill minispheres with or without CyA at the clinically relevant doses tested here have negligible direct effects on the gut microbiota composition. Butyrate and acetate production increased, however, in the presence of the beads in an ex vivo model system as well as in vivo in healthy subjects. Importantly, this study also demonstrates the relevance and value of using ex vivo colon models to predict the in vivo impact of colon-targeted drugs directly on the gut microbiota.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1560-1560
Author(s):  
Inah Gu ◽  
Wing Shun Lam ◽  
Daya Marasini ◽  
Cindi Brownmiller ◽  
Brett Savary ◽  
...  

Abstract Objectives Arabinoxylan is a non-starch polysaccharide and rich in wheat, rice and many other cereal grains. Diets high in fiber help promoting gut health in obesity. The objective of this study was to investigate the impact of arabinoxylan from rice bran on the gut microbiota and short chain fatty acids (SCFA) in normal weight (NW) and overweight/obese (OO) subjects through in vitro fecal fermentation. Methods Arabinoxylan was extracted from rice bran fiber. For in vitro fecal fermentation, each fecal sample from NW (n = 6, 3 males and 3 females) and OO (n = 7, 3 males and 4 females) was diluted into anaerobic medium with three treatments: control (no substrates), fructooligosaccharides (FOS, a well-known prebiotic), and arabinoxylan. Samples were incubated at 37˚C and aliquots were taken at 0, 4, 8, 12 and 24 h. SCFA content from samples at all timepoints was analyzed using HPLC. Samples at 0 and 24 h were used for gut microbiota analysis through 16S rRNA gene sequencing. Statistical analyses were performed for the randomized complete block design, where the weight classes are confounded with blocks (subjects). Friedman test was used to determine the difference at 5% level of significance. Results As a result, arabinoxylan treatment significantly increased total SCFA concentration in both NW and OO subjects than control (P &lt; 0.05), comparable to FOS treatment. Between weight classes under arabinoxylan treatment, OO group showed a significantly higher total SCFA content than NW group (P &lt; 0.05). Arabinoxylan changed gut microbial population at the genus level, stimulating Bifidobacterium, Collinsella and Blautia and decreasing Clostridium XIVa and b, Dorea and Oscillibacter (P &lt; 0.05). In addition, different microbiome population was shown in weight classes with three treatments, showing higher Bacteroides in NW and higher Prevotella in OO. Conclusions These results showed that arabinoxylan from rice bran modified gut microbiota in both weight classes, increasing total SCFA content. This study suggests that arabinoxylan from rice bran may have a potential impact on microbial gut health in obesity with prebiotic activities. Funding Sources University of Arkansas.


Urolithiasis ◽  
2018 ◽  
Vol 46 (6) ◽  
pp. 503-514 ◽  
Author(s):  
Ruiqiang Tang ◽  
Yonghua Jiang ◽  
Aihua Tan ◽  
Juan Ye ◽  
Xiaoying Xian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document