scholarly journals In Vitro Fecal Fermentation Patterns of Arabinoxylan from Rice Bran on Gut Microbiota in Normal Weight and Overweight/Obese Subjects

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1560-1560
Author(s):  
Inah Gu ◽  
Wing Shun Lam ◽  
Daya Marasini ◽  
Cindi Brownmiller ◽  
Brett Savary ◽  
...  

Abstract Objectives Arabinoxylan is a non-starch polysaccharide and rich in wheat, rice and many other cereal grains. Diets high in fiber help promoting gut health in obesity. The objective of this study was to investigate the impact of arabinoxylan from rice bran on the gut microbiota and short chain fatty acids (SCFA) in normal weight (NW) and overweight/obese (OO) subjects through in vitro fecal fermentation. Methods Arabinoxylan was extracted from rice bran fiber. For in vitro fecal fermentation, each fecal sample from NW (n = 6, 3 males and 3 females) and OO (n = 7, 3 males and 4 females) was diluted into anaerobic medium with three treatments: control (no substrates), fructooligosaccharides (FOS, a well-known prebiotic), and arabinoxylan. Samples were incubated at 37˚C and aliquots were taken at 0, 4, 8, 12 and 24 h. SCFA content from samples at all timepoints was analyzed using HPLC. Samples at 0 and 24 h were used for gut microbiota analysis through 16S rRNA gene sequencing. Statistical analyses were performed for the randomized complete block design, where the weight classes are confounded with blocks (subjects). Friedman test was used to determine the difference at 5% level of significance. Results As a result, arabinoxylan treatment significantly increased total SCFA concentration in both NW and OO subjects than control (P < 0.05), comparable to FOS treatment. Between weight classes under arabinoxylan treatment, OO group showed a significantly higher total SCFA content than NW group (P < 0.05). Arabinoxylan changed gut microbial population at the genus level, stimulating Bifidobacterium, Collinsella and Blautia and decreasing Clostridium XIVa and b, Dorea and Oscillibacter (P < 0.05). In addition, different microbiome population was shown in weight classes with three treatments, showing higher Bacteroides in NW and higher Prevotella in OO. Conclusions These results showed that arabinoxylan from rice bran modified gut microbiota in both weight classes, increasing total SCFA content. This study suggests that arabinoxylan from rice bran may have a potential impact on microbial gut health in obesity with prebiotic activities. Funding Sources University of Arkansas.

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3194
Author(s):  
Jing Wang ◽  
Yong Chen ◽  
Xiaosong Hu ◽  
Fengqin Feng ◽  
Luyun Cai ◽  
...  

The beneficial effects of ginger polyphenols have been extensively reported. However, their metabolic characteristics and health effects on gut microbiota are poor understood. The purpose of this study was to investigate the digestion stability of ginger polyphenols and their prebiotic effects on gut microbiota by simulating digestion and fermentation in vitro. Following simulated digestion in vitro, 85% of the polyphenols were still detectable, and the main polyphenol constituents identified in ginger extract are 6-, 8-, and 10-gingerols and 6-shogaol in the digestive fluids. After batch fermentation, the changes in microbial populations were measured by 16S rRNA gene Illumina MiSeq sequencing. In mixed-culture fermentation with fecal inoculate, digested ginger extract (GE) significantly modulated the fecal microbiota structure and promoted the growth of some beneficial bacterial populations, such as Bifidobacterium and Enterococcus. Furthermore, incubation with GE could elevate the levels of short-chain fatty acids (SCFAs) accompanied by a decrease in the pH value. Additionally, the quantitative PCR results showed that 6-gingerol (6G), as the main polyphenol in GE, increased the abundance of Bifidobacterium significantly. Therefore, 6G is expected to be a potential prebiotic that improves human health by promoting gut health.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 217 ◽  
Author(s):  
Danielle Ashley ◽  
Daya Marasini ◽  
Cindi Brownmiller ◽  
Jung Lee ◽  
Franck Carbonero ◽  
...  

The human gut microbiota is considered as a crucial mediator between diet and gut homeostasis and body weight. The unique polyphenolic profile of sorghum bran may promote gastrointestinal health by modulating the microbiota. This study evaluated gut microbiota and modulation of short-chain fatty acids (SCFA) by sorghum bran polyphenols in in vitro batch fermentation derived from normal weight (NW, n = 11) and overweight/obese (OO, n = 11) subjects’ fecal samples. Six separate treatments were applied on each batch fermentation: negative control (NC), fructooligosaccharides (FOS), black sorghum bran extract (BSE), sumac sorghum bran extract (SSE), FOS + BSE, or FOS + SSE; and samples were collected before and after 24 h. No significant differences in total and individual SCFA production were observed between NW and OO subjects. Differential responses to treatment according to weight class were observed in both phyla and genera. Sorghum bran polyphenols worked with FOS to enhance Bifidobacterium and Lactobacillus, and independently stimulated Roseburia and Prevotella (p < 0.05). Our results indicate that sorghum bran polyphenols have differential effects on gut health and may positively impact gut ecology, with responses varying depending on weight class.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2052
Author(s):  
Inah Gu ◽  
Wing Shun Lam ◽  
Daya Marasini ◽  
Cindi Brownmiller ◽  
Brett J. Savary ◽  
...  

Arabinoxylan (AX) is a structural polysaccharide found in wheat, rice and other cereal grains. Diets high in AX-containing fiber may promote gut health in obesity through prebiotic function. Thus, the impact of soluble AX isolated from rice bran fiber on human gut microbiota phylogenetic composition and short-chain fatty acid (SCFA) production patterns from normal-weight and overweight/obese subjects was investigated through in vitro fecal fermentation. Results showed that rice bran arabinoxylan modified the microbiota in fecal samples from both weight classes compared to control, significantly increasing Collinsella, Blautia and Bifidobacterium, and decreasing Sutterella, Bilophila and Parabacteroides. Rice bran AX also significantly increased total and individual SCFA contents (p < 0.05). This study suggests that rice bran AX may beneficially impact gut health in obesity through prebiotic activities.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2330
Author(s):  
Carmen van der Linde ◽  
Monica Barone ◽  
Silvia Turroni ◽  
Patrizia Brigidi ◽  
Enver Keleszade ◽  
...  

The response of a coeliac and a healthy gut microbiota to the green algae Chlorella pyrenoidosa was evaluated using an in vitro continuous, pH controlled, gut model system, which simulated the human colon. The effect of C. pyrenoidosa on the microbial structure was determined by 16S rRNA gene sequencing and inferred metagenomics, whereas the metabolic activitywas determined by1H-nuclear magnetic resonancespectroscopic analysis. The addition of C. pyrenoidosa significantly increased the abundance of the genera Prevotella, Ruminococcus and Faecalibacterium in the healthy donor, while an increase in Faecalibacterium, Bifidobacterium and Megasphaera and a decrease in Enterobacteriaceae were observed in the coeliac donor. C. pyrenoidosa also altered several microbial pathways including those involved in short-chain fatty acid (SCFA) production. At the metabolic level, a significant increase from baseline was seen in butyrate and propionate (p < 0.0001) in the healthy donor, especially in vessels 2 and 3. While acetate was significantly higher in the healthy donor at baseline in vessel 3 (p < 0.001) compared to the coeliac donor, this was markedly decreased after in vitro fermentation with C. pyrenoidosa. This is the first in vitro fermentation study of C. pyrenoidosa and human gut microbiota, however, further in vivo studies are needed to prove its efficacy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Palmas ◽  
Silvia Pisanu ◽  
Veronica Madau ◽  
Emanuela Casula ◽  
Andrea Deledda ◽  
...  

AbstractIn the present study, we characterized the distinctive signatures of the gut microbiota (GM) from overweight/obese patients (OB), and normal-weight controls (NW), both of Sardinian origin. Fecal bacterial composition of 46 OB patients (BMI = 36.6 ± 6.0; F/M = 40/6) was analyzed and compared to that of 46 NW subjects (BMI = 21.6 ± 2.1; F/M = 41/5), matched for sex, age and smoking status, by using 16S rRNA gene sequencing on MiSeq Illumina platform. The gut microbial community of OB patients exhibited a significant decrease in the relative abundance of several Bacteroidetes taxa (i.e. Flavobacteriaceae, Porphyromonadaceae, Sphingobacteriaceae, Flavobacterium, Rikenella spp., Pedobacter spp., Parabacteroides spp., Bacteroides spp.) when compared to NW; instead, several Firmicutes taxa were significantly increased in the same subjects (Lachnospiraceae, Gemellaceae, Paenibacillaceae, Streptococcaceae, Thermicanaceae, Gemella, Mitsuokella, Streptococcus, Acidaminococcus spp., Eubacterium spp., Ruminococcus spp., Megamonas spp., Streptococcus, Thermicanus, Megasphaera spp. and Veillonella spp.). Correlation analysis indicated that body fatness and waist circumference negatively correlated with Bacteroidetes taxa, while Firmicutes taxa positively correlated with body fat and negatively with muscle mass and/or physical activity level. Furthermore, the relative abundance of several bacterial taxa belonging to Enterobacteriaceae family, known to exhibit endotoxic activity, was increased in the OB group compared to NW. The results extend our knowledge on the GM profiles in Italian OB, identifying novel taxa linking obesity and intestine.


Author(s):  
Yoshihiro Tomizawa ◽  
Shunya Kurokawa ◽  
Daiki Ishii ◽  
Katsuma Miyaho ◽  
Chiharu Ishii ◽  
...  

Abstract Background The antibacterial effects of psychotropics may be part of their pharmacological effects when treating depression. However, limited studies have focused on gut microbiota in relation to prescribed medication. Method We longitudinally investigated the relationship between patients’ prescribed medications and intestinal bacterial diversity in a naturalistic treatment course for patients with major depressive disorders and anxiety disorders. Patients were recruited and their stool was collected at 3 time points during their usual psychiatric treatments. Gut microbiota were analyzed using 16S rRNA gene sequencing. We examined the impact of psychotropics (i.e., antidepressants, anxiolytics, antipsychotics) on their gut microbial diversity and functions. Results We collected 246 stool samples from 40 patients. Despite no differences in microbial diversity between medication groups at the baseline, over the course of treatment, phylogenic diversity whole-tree diversity decreased in patients on antipsychotics compared with patients without (P = .027), and beta diversity followed this trend. Based on a fixed-effect model, antipsychotics predicted microbial diversity; the higher doses correlated with less diversity based on the Shannon index and phylogenic diversity whole tree (estimate = −0.00254, SE = 0.000595, P &lt; .0001; estimate = −0.02644, SE = 0.00833, P = .002, respectively). Conclusion Antipsychotics may play a role in decreasing the alpha diversity of the gut microbiome among patients with depression and anxiety, and our results indicate a relationship with medication dosage. Future studies are warranted and should consider patients’ types and doses of antipsychotics in order to further elucidate the mechanisms of gut-brain interactions in psychiatric disorders.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2806 ◽  
Author(s):  
Evdokia K. Mitsou ◽  
Georgia Saxami ◽  
Emmanuela Stamoulou ◽  
Evangelia Kerezoudi ◽  
Eirini Terzi ◽  
...  

Alterations of gut microbiota are evident during the aging process. Prebiotics may restore the gut microbial balance, with β-glucans emerging as prebiotic candidates. This study aimed to investigate the impact of edible mushrooms rich in β-glucans on the gut microbiota composition and metabolites by using in vitro static batch culture fermentations and fecal inocula from elderly donors (n = 8). Pleurotus ostreatus, P. eryngii, Hericium erinaceus and Cyclocybe cylindracea mushrooms derived from various substrates were examined. Gut microbiota composition (quantitative PCR (qPCR)) and short-chain fatty acids (SCFAs; gas chromatography (GC)) were determined during the 24-h fermentation. P. eryngii induced a strong lactogenic effect, while P. ostreatus and C. cylindracea induced a significant bifidogenic effect (p for all <0.05). Furthermore, P. eryngii produced on wheat straw and the prebiotic inulin had comparable Prebiotic Indexes, while P. eryngii produced on wheat straw/grape marc significantly increased the levels of tested butyrate producers. P. ostreatus, P. eryngii and C. cylindracea had similar trends in SCFA profile; H. erinaceus mushrooms were more diverse, especially in the production of propionate, butyrate and branched SCFAs. In conclusion, mushrooms rich in β-glucans may exert beneficial in vitro effects in gut microbiota and/or SCFAs production in elderly subjects.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2125
Author(s):  
Limin Wei ◽  
Bo Zeng ◽  
Siyuan Zhang ◽  
Feng Li ◽  
Fanli Kong ◽  
...  

The gut microbiota coevolve with the host and can be stably transmitted to the offspring. Host genetics plays a crucial role in the composition and abundance of gut microbiota. Inbreeding can cause a decrease of the host’s genetic diversity and the heterozygosity. In this study, we used 16S rRNA gene sequencing to compare the differences of gut microbiota between the Diannan small-ear pig and Banna minipig inbred, aiming to understand the impact of inbreeding on the gut microbiota. Three dominant bacteria (Stenotrophlomonas, Streptococcus, and Lactobacillus) were steadily enriched in both the Diannan small-ear pig and Banna minipig inbred. After inbreeding, the gut microbiota alpha diversity and some potential probiotics (Bifidobacterium, Tricibacter, Ruminocaccae, Christensenellaceae, etc.) were significantly decreased, while the pathogenic Klebsiella bacteria was significantly increased. In addition, the predicted metagenomic analysis (PICRUSt2) indicated that several amino acid metabolisms (‘‘Valine, leucine, and isoleucine metabolism’’, ‘‘Phenylalanine, tyrosine, and tryptophan biosynthesis’’, ‘‘Histidine metabolism’’) were also markedly decreased after the inbreeding. Altogether our data reveal that host inbreeding altered the composition and the predicted function of the gut microbiome, which provides some data for the gut microbiota during inbreeding.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S893-S893
Author(s):  
Pearlie P Chong ◽  
Pearlie P Chong ◽  
Sarah K Hussain ◽  
Nicole Poulides ◽  
Laura Coughlin ◽  
...  

Abstract Background In vitro studies have shown that enteric viruses require the gut microbiota (specific members of the Enterobacteriaceae family) for efficient infection of the gastrointestinal tract. Human norovirus (NV) infection in transplant recipients may be chronic and severe. The role of gut microbiota has not been defined in this setting. We hypothesized that gut microbiota diversity and composition are different in norovirus-infected transplant patients. Methods We performed a single-center, pilot, prospective cohort study of adult solid-organ transplant and hematopoietic stem cell transplant recipients with diarrhea. Serial fecal samples were collected and processed for gDNA. Norovirus levels were quantified by PCR and gut microbiota profiling determined by 16S rRNA gene sequencing. Results Twenty-five transplant recipients were included: 9 with NV infection and 16 without. Age (61 ± SEM 2.3 years vs. 54 ± 3.5 years; P = 0.172), duration of diarrhea prior to diagnosis (105 ± 43 days vs. 20 ± 7 days; P = 0.146), prior cumulative antibiotic use (42 ± 12 days vs. 46 ± 17 days; P = 0.646), anti-anaerobic antibiotic use (7 ± 3 days vs. 11 ± 6 days; P = 0.643) and length of hospitalization (12 ± 6 days vs. 12 ± 3 days; P = 0.624) were not different between transplant recipients with and without NV infection. Interestingly, the relative abundance of Enterobactericeae was significantly higher in NV-infected transplant recipients compared with those without NV infection (26 ± 5.8% vs. 6.2 ± 2.8%; P = 0.017, Mann–Whitney) (Figure 1). In contrast, the abundance of the Phyla Bacteroidetes (11.2 ± 5.2% vs. 26.3 ± 6.5%; P = 0.191), and Firmicutes (26.8 ± 7.6% vs. 24.9 ± 4.7%; P = 0.803), were not significantly different between those who were NV and not NV-infected. Of note, the diversity metrics of Shannon (3.5 ± 0.4 vs. 3.8 ± 0.3; P = 0.637) and inverse Simpson indices (1.3 ± 0.1 vs. 1.1±0.1; P = 0.419) were not significantly different between the two groups. Conclusion Norovirus-infected transplant recipients had a significantly higher relative abundance of Enterobactericeae in their gut microbiota compared with transplant recipients without norovirus infection. Future studies are needed to explore if this association is mechanistically important for norovirus infection. Disclosures All authors: No reported disclosures.


2021 ◽  
Author(s):  
Li Wang ◽  
Man-Yun Chen ◽  
Li Shao ◽  
Wei Zhang ◽  
Xiang-Ping Li ◽  
...  

Abstract Background: Panax notoginseng saponins (PNS) as the main effective substances from P. notoginseng with low bioavailability could be bio-converted by human gut microbiota. In our previous study, PNS metabolic variations mediated by gut microbiota have been observed between high fat, high protein (HF-HP)-diet and low fat, plant fiber-rich (LF-PF)-diet subjects. In this study, we aimed to correspondingly characterize the relationship between distinct gut microbiota profiles and PNS metabolites. Methods: Gut microbiota were collected from HF-HP and LF-PF healthy adults, respectively and profiled by 16S rRNA gene sequencing. PNS were incubated with gut microbiota in vitro. A LC-MS/MS method was developed to quantify the five main metabolites yields including ginsenoside F1 (GF1), ginsenoside Rh2 (GRh2), ginsenoside compound K (GC-K), protopanaxatriol (PPT) and protopanaxadiol (PPD). The selected microbial species, Bifidobacterium adolescentis and Lactobacillus rhamnosus, were employed to metabolize PNS for the corresponding metabolites.Results: The five main metabolites were significantly different between the two diet groups. Compared with HF-HP group, the microbial genus Blautia, Bifidobacterium, Clostridium, Corynebacterium, Dorea, Enhydrobacter, Lactobacillus, Roseburia, Ruminococcus, SMB53, Streptococcus, Treponema and Weissella were enriched in LF-PF group, while Phascolarctobacterium and Oscillospira were relatively decreased. Furthermore, Spearman’s correlative analysis revealed gut microbiota enriched in LF-PF and HF-HP groups were positively and negatively associated with PNS metabolites yields, respectively. Conclusions: Our data showed gut microbiota diversity led to the personalized bioconversion of PNS.


Sign in / Sign up

Export Citation Format

Share Document