scholarly journals HBP1-mediated transcriptional repression of AFP inhibits hepatoma progression

Author(s):  
Zhengyi Cao ◽  
Yuning Cheng ◽  
Jiyin Wang ◽  
Yujuan Liu ◽  
Ruixiang Yang ◽  
...  

Abstract Background Hepatoma is a common malignancy of the liver. The abnormal high expression of alpha-fetoprotein (AFP) is intimately associated with hepatoma progress, but the mechanism of transcriptional regulation and singularly activation of AFP gene in hepatoma is not clear. Methods The expression of transcription factor HBP1 and AFP and clinical significance were further analyzed in hepatoma tissues from the patients who received surgery or TACE and then monitored for relapse for up 10 years. HBP1-mediated transcriptional regulation of AFP was analyzed by Western blotting, Luciferase assay, Realtime-PCR, ChIP and EMSA. After verified the axis of HBP-AFP, its impact on hepatoma was measured by MTT, Transwell and FACS in hepatoma cells and by tumorigenesis in HBP1−/− mice. Results The relative expressions of HBP1 and AFP correlated with survival and prognosis in hepatoma patients. HBP1 repressed the expression of AFP gene by directly binding to the AFP gene promoter. Hepatitis B Virus (HBV)-encoded protein HBx promoted malignancy in hepatoma cells through binding to HBP1 directly. Icaritin, an active ingredient of Chinese herb epimedium, inhibited malignancy in hepatoma cells through enhancing HBP1 transrepression of AFP. The repression of AFP by HBP1 attenuated AFP effect on PTEN, MMP9 and caspase-3, thus inhibited proliferation and migration, and induced apoptosis in hepatoma cells. The deregulation of AFP by HBP1 contributed to hepatoma progression in mice. Conclusions Our data clarify the mechanism of HBP1 in inhibiting the expression of AFP and its suppression in malignancy of hepatoma cells, providing a more comprehensive theoretical basis and potential solutions for the diagnosis and treatment of hepatoma.

2020 ◽  
Author(s):  
Zhengyi Cao ◽  
Yuning Cheng ◽  
Jiyin Wang ◽  
Yujuan Liu ◽  
Ruixiang Yang ◽  
...  

Abstract Background: Hepatoma is a common malignancy of the liver. The abnormal high expression of alpha-fetoprotein (AFP) is intimately associated with hepatoma progress, but the mechanism of transcriptional regulation and singularly activation of AFP gene in hepatoma is not clear. Methods: The expression of transcription factor HBP1 and AFP and clinical significance were father analyzed in hepatoma tissues from the patients who received surgery or TACE and then monitored for relapse for up 10 years. HBP1-mediated transcriptional regulation of AFP was analyzed by Western blotting, luciferase assay, Realtime-PCR, ChIP and EMSA. After verified the axis of HBP-AFP, its impact on hepatoma was measured by MTT, Transwell and FACS in hepatoma cells and by tumorigenesis in HBP1-/- mice.Results: This study demonstrated that the relative expressions of HBP1 and AFP correlated with decreased survival and prognosis in hepatoma patients. HBP1 represses the expression of AFP gene by directly binding to the AFP gene promoter. Hepatitis B Virus (HBV)-encoded protein HBx promotes malignancy in hepatoma cells through binding to HBP1 directly. Icaritin, an active ingredient of Chinese herb epimedium, inhibits malignancy in hepatoma cells through enhancing HBP1 transrepression of AFP. The repression of AFP by HBP1 attenuates AFP effect on PTEN, MMP9 and caspase-3, thus inhibits proliferation and migration, and induces apoptosis in hepatoma cells. The deregulation of AFP by HBP1 contributes to hepatoma progression in mice. Conclusion: Our data clarify the mechanism of HBP1 in inhibiting the expression of AFP and its suppression in malignancy of hepatoma cells, providing a more comprehensive theoretical basis and potential solutions for the early diagnosis and treatment of hepatoma.


2011 ◽  
Vol 301 (3) ◽  
pp. G565-G573 ◽  
Author(s):  
Yijuan Zhang ◽  
Yunbo Li ◽  
Yifan Ma ◽  
Shuhui Liu ◽  
Yinglong She ◽  
...  

Interleukin-18 (IL-18) has been reported to inhibit hepatitis B virus (HBV) replication in the liver of HBV transgenic mice; however, the molecular mechanism of its antiviral effect has not been fully understood. In the present study, it was shown that IL-18 and its receptors (IL-18R) were constitutively expressed in hepatoma cell lines HepG2 and HepG2.2.15 as well as normal liver cell line HL-7702. We demonstrated that IL-18 directly inhibited HBV replication in HepG2.2.15 cells via downregulating the activities of HBV core and X gene promoters. The suppressed HBV replication by IL-18 could be rescued by the administration of BAY11-7082, an inhibitor of transcription factor NF-κB. On the other hand, it was of interest that IL-18 promoted HepG2 cell metastasis and migration dose dependently in both wound-healing assays and Transwell assays. The underlying mechanism could be partially attributable to the increased activities of extracellular matrix metalloproteinase (MMP)-9, MMP-3, and MMP-2 by IL-18, which upregulated the mRNA levels of MMP-3 and MMP-9 in a NF-κB-dependent manner. Furthermore, it was confirmed that expression of IL-18/IL-18R and most MMPs were remarkably upregulated in hepatocellular carcinoma (HCC) liver cancer tissue specimens, suggesting that IL-18/IL-18R-triggered signaling pathway was closely related to HCC metastasis in vivo. Therefore, we revealed the dual effects of IL-18 in human hepatocytes: it not only inhibited HBV replication but also promoted hepatoma cells metastasis and migration. NF-κB played a critical role in both effects. Our work contributed to a deeper understanding of the biological function of IL-18 in human hepatocytes.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jing Li ◽  
Rubing Mo ◽  
Linmei Zheng

Abstract Objective Colorectal cancer is one of the most common malignancy in the world. The oncogenesis of colorectal cancer is still not fully elucidated. It was reported that microRNA-490-3p (miR-490-3p) was closely related to the regulation of cancers. However, if miR-490-3p could also affect colorectal cancer and the specific mechanism remains unclear. Methods qRT-PCR was conducted to examine the expression of miR-490-3p. DIANA, miRDB, and TargetScan databases were used to identify target genes. LOVO and SW480 cells were transfected by miR-490-3p mimics and inhibitors. Transwell assay was used to measure cell invasion and migration. Cisplatin and fluorouracil were administered to investigate chemotherapy resistance. Western blot was used to measure TNKS2 protein expression. Binding sites were verified using the double luciferase assay. Results miR-490-3p expression was low in the colorectal cancer cells. The level of miR-490-3p was negatively correlated with cell migration and invasion of cancer cells. miR-490-3p could bind to TNKS2 mRNA 3′UTR directly. miR-490-3p can suppress cell viability and resistance to chemotherapy in colorectal cancer cells through targeting TNKS2. Conclusions miR-490-3p could affect colorectal cancer by targeting TNKS2. This study may provide a potential therapeutic target for colorectal cancer.


2019 ◽  
Vol 20 (11) ◽  
pp. 2732 ◽  
Author(s):  
Anwar Abdurahman ◽  
Xing Du ◽  
Yilong Yao ◽  
Yiming Sulaiman ◽  
Jueken Aniwashi ◽  
...  

BMPR1B is a type 1B receptor of the canonical bone morphogenetic protein (BMP)/Sma- and mad-related protein (Smad) signaling pathway and is well known as the first major gene associated with sheep prolificacy. However, little is known about the transcriptional regulation of the ovine BMPR1B gene. In this study, we identified the ovine BMPR1B gene promoter and demonstrated that its transcription was regulated by Smad4. In sheep ovarian follicles, three transcriptional variants of BMPR1B gene with distinct transcription start sites were identified using 5′ RACE assay while variants II and III were more strongly expressed. Luciferase assay showed that the region −405 to −200 nt is the PII promoter region of variant II. Interestingly, two putative Smad4-binding elements (SBEs) were detected in this region. Luciferase and ChIP assay revealed that Smad4 enhances PII promoter activity of the ovine BMPR1B gene by directly interacting with SBE1 motif. Furthermore, in the ovine granulosa cells, Smad4 regulated BMPRIB expression, and BMPRIB-mediated granulosa cells apoptosis. Overall, our findings not only characterized the 5’ regulatory region of the ovine BMPR1B gene, but also uncovered a feedback regulatory mechanism of the canonical BMP/Smad signaling pathway and provided an insight into the transcriptional regulation of BMPR1B gene and sheep prolificacy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongjuan You ◽  
Dongchen Yuan ◽  
Yanwei Bi ◽  
Ning Zhang ◽  
Qi Li ◽  
...  

Abstract Background Hepatitis B virus (HBV) X protein (HBX) has been reported to be responsible for the epithelial-mesenchymal transition (EMT) in HBV-related hepatocellular carcinoma (HCC). Vimentin is an EMT-related molecular marker. However, the importance of vimentin in the pathogenesis of HCC mediated by HBX has not been well determined. Methods The expression of vimentin induced by HBX, and the role of LIM and SH3 domain protein 1 (LASP1) in HBX-induced vimentin expression in hepatoma cells were examined by western blot and immunohistochemistry analysis. Both the signal pathways involved in the expression of vimentin, the interaction of HBX with vimentin and LASP1, and the stability of vimentin mediated by LASP1 in HBX-positive cells were assessed by western blot, Co-immunoprecipitation, and GST-pull down assay. The role of vimentin in EMT, proliferation, and migration of HCC cells mediated by HBX and LASP1 were explored with western blot, CCK-8 assay, plate clone formation assay, transwell assay, and wound healing assay. Results Vimentin expression was increased in both HBX-positive hepatoma cells and HBV-related HCC tissues, and the expression of vimentin was correlated with HBX in HBV-related HCC tissues. Functionally, vimentin was contributed to the EMT, proliferation, and migration of hepatoma cells mediated by HBX. The mechanistic analysis suggested that HBX was able to enhance the expression of vimentin through LASP1. On the one hand, PI3-K, ERK, and STAT3 signal pathways were involved in the upregulation of vimentin mediated by LASP1 in HBX-positive hepatoma cells. On the other hand, HBX could directly interact with vimentin and LASP1, and dependent on LASP1, HBX was capable of promoting the stability of vimentin via protecting it from ubiquitination mediated protein degradation. Besides these, vimentin was involved in the growth and migration of hepatoma cells mediated by LASP1 in HBX-positive hepatoma cells. Conclusion Taken together, these findings demonstrate that, dependent on LASP1, vimentin is crucial for HBX-mediated EMT and hepatocarcinogenesis, and may serve as a potential target for HBV-related HCC treatment.


APOPTOSIS ◽  
2007 ◽  
Vol 12 (10) ◽  
pp. 1827-1836 ◽  
Author(s):  
Xiaohong Liang ◽  
Juan Du ◽  
Yugang Liu ◽  
Min Cui ◽  
Chunhong Ma ◽  
...  

2019 ◽  
Vol 20 (22) ◽  
pp. 5714 ◽  
Author(s):  
Tsuchiya ◽  
Amisaki ◽  
Takenaga ◽  
Honjo ◽  
Fujiwara ◽  
...  

Unconventional prefoldin RNA polymerase II subunit 5 interactor (URI1) has emerged as an oncogenic driver in hepatocellular carcinoma (HCC). Although the hepatitis B virus (HBV) represents the most common etiology of HCC worldwide, it is unknown whether URI1 plays a role in HBV-related HCC (HCC-B). In the present study, we investigated URI1 expression and its underlying mechanism in HCC-B tissues and cell lines. URI1 gene-promoter activity was determined by a luciferase assay. Human HCC-B samples were used for a chromatin immunoprecipitation assay. We found that c-MYC induced URI1 expression and activated the URI1 promoter through the E-box in the promoter region while the HBx protein significantly enhanced it. The positivity of URI1 expression was significantly higher in HCC-B tumor tissues than in non-HBV-related HCC tumor tissues, suggesting that a specific mechanism underlies URI1 expression in HCC-B. In tumor tissues from HCC-B patients, a significantly higher level of c-MYC was recruited to the E-box than in non-tumor tissues. These results suggest that HBx and c-MYC are involved in URI1 expression in HCC-B. URI1 expression may play important roles in the development and progression of HCC-B because HBx and c-MYC are well-known oncogenic factors in the virus and host, respectively.


Sign in / Sign up

Export Citation Format

Share Document