scholarly journals HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML

Author(s):  
Zheng Li ◽  
Fangce Wang ◽  
Xiaoxue Tian ◽  
Jun Long ◽  
Bin Ling ◽  
...  

Abstract Background: Leukaemia stem cells (LSCs) are responsible for the initiation, maintenance, and recurrence of acute myeloid leukaemia (AML), an aggressive haematological malignancy associated with drug resistance and relapse. Identifying therapeutic LSC targets is critical to curing AML. Methods Bioinformatics databases were used to identify therapeutic LSC targets. The conditional knockout mice were used to analyse the role of HCK in leukaemogenesis or normal haematopoiesis. Colony-forming assays, cell counting, and flow cytometry were used to detect the viability and function of leukaemia cells. RT-PCR, western blotting, and RNA sequencing were used to detect mRNA and protein expression. Result HCK is expressed at higher levels in LSCs than in haematopoietic stem cells (HSCs), and high HCK levels are correlated with reduced survival time in AML patients. Knockdown of HCK leads to cell cycle arrest, which results in a dramatic decrease in the proliferation and colony formation in human AML cell lines. Moreover, HCK is required for leukemogenesis and leukaemia maintenance in vivo and in vitro. HCK is necessary for the self-renewal of LSCs during serial transplantation and limiting dilution assay. The phenotypes resulting from HCK deficiency can be rescued by CDK6 overexpression in the human cell line. RNA sequencing and gene expression have demonstrated that HCK may sustain cell cycle entry and maintain the self-renewal ability of LSCs through activating the ERK1/2-c-Myc-CDK6 signalling axis. In contrast, HCK deletion does not affect normal haematopoiesis or haematopoietic reconstruction in mice. Conclusions HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML and may be an ideal therapeutic target for eradicating LSCs without influencing normal haematopoiesis.

2021 ◽  
Author(s):  
Zheng Li ◽  
Fangce Wang ◽  
Jun Long ◽  
Wenjun Zhang ◽  
Jun Xu ◽  
...  

Abstract Background: Leukaemia stem cells (LSCs) are responsible for the initiation, maintenance, and recurrence of acute myeloid leukaemia (AML), an aggressive haematological malignancy associated with drug resistance and relapse. Identifying therapeutic LSC targets is critical to curing AML.Methods: Bioinformatics databases were used to identify therapeutic LSC targets. The conditional knockout mice were used to analyse the role of HCK in leukaemogenesis or normal haematopoiesis. Colony-forming assays, cell counting, and flow cytometry were used to detect the viability and function of leukaemia cells. RT-PCR, western blotting, and RNA sequencing were used to detect mRNA and protein expression.Result: HCK is expressed at higher levels in LSCs than in haematopoietic stem cells (HSCs), and high HCK levels are correlated with reduced survival time in AML patients. Knockdown of HCK leads to cell cycle arrest, which results in a dramatic decrease in the proliferation and colony formation in human AML cell lines. Moreover, HCK is required for leukemogenesis and leukaemia maintenance in vivo and in vitro. HCK is necessary for the self-renewal of LSCs during serial transplantation and limiting dilution assay. The phenotypes resulting from HCK deficiency can be rescued by CDK6 overexpression in the human cell line. RNA sequencing and gene expression have demonstrated that HCK may sustain cell cycle entry and maintain the self-renewal ability of LSCs through activating the ERK1/2-c-Myc-CDK6 signalling axis. In contrast, HCK deletion does not affect normal haematopoiesis or haematopoietic reconstruction in mice.Conclusion: HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML and may be an ideal therapeutic target for eradicating LSCs without influencing normal haematopoiesis.


2014 ◽  
Vol 16 (suppl 5) ◽  
pp. v86-v87
Author(s):  
H. K. Lee ◽  
E. Buchris ◽  
S. Finniss ◽  
S. Cazacu ◽  
C. Xiang ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2-2 ◽  
Author(s):  
Simón Méndez-Ferrer ◽  
Tatyana V. Michurina ◽  
Francesca Ferraro ◽  
Amin Mazloom ◽  
Ben MacArthur ◽  
...  

Abstract Abstract 2 Despite their therapeutic potential, mesenchymal stem cells (MSCs) remain poorly defined owing to their heterogeneity, the inability to assess in vivo self-renewal and the scarcity of markers allowing their identification, isolation and genetic manipulation. In the bone marrow (BM) of Nestin (Nes)-Gfp transgenic mice, CD31− CD45− GFP+ peri-vascular cells expressing endogenous nestin are associated with hematopoietic stem cells (HSCs) and innervated by fibers from the sympathetic nervous system (SNS). Flow cytometry sorting of BM CD45− Nes:GFP+ and CD45− Nes:GFP− cells has revealed that Nes:GFP+ cells, despite their rarity (4.0 ± 0.6% CD45− cells), contain all the colony-forming unit-fibroblastic (CFU-F) activity and have the exclusive capacity of forming self-renewing, multipotent clonal spheres that differentiate robustly along osteoblastic, chondrocytic and adipocytic lineages. To test in vivo self-renewal, single spheres derived from Nes-Gfp / Col2.3-Cre / R26R triple-transgenic animals were allowed to attach to phosphocalcic ceramic ossicles that were subcutaneously implanted into littermate mice that did not carry the transgenes. Histological analyses after 2 months revealed the presence of β-galactosidase+ osteoblasts (OBs) derived from Nes:GFP+ cells and not from 30,000 control CD45− Nes:GFP− cells. Hematopoietic areas were associated with Nes:GFP+ cells, that yielded per ossicle 310 ± 32 GFP+ secondary spheres (n=6), 38.6 ± 1.9% of which showed spontaneous multilineage differentiation into Col2.3+ OBs and Oil Red O+ adipocytes. Single secondary spheres subjected to a subsequent round of transplantation yielded after 8 months 8,557 ± 537 GFP+ spheres per ossicle (n = 7), which also generated Col2.3+ OBs, as a further proof of their self-renewal, osteoblastic differentiation potential and donor origin. Lineage-tracing studies in Nes-Cre / R26R mice have revealed the contribution of nestin-expressing cells in endochondral and membranous ossification. Administration of tamoxifen to adult Nes-CreERT2 mice bred to different reporter lines revealed that adult nestin-expressing BM cells could generate OBs, chondrocytes and osteocytes after 8-month chasing, suggesting an active role for adult nestin+ MSCs in physiological bone turnover. Genome-wide comparison analyses have shown that BM CD45− Nes:GFP+ cells are distinct from other stem cells but closest to in vitro expanded MSCs. Applying gene ontology analyses, metabolic and cell cycle genes were up- and down-regulated, respectively, in BM CD45− Nes:GFP+ cells. We have studied gene regulation, cell cycle and fate in response to granulocyte-colony stimulating factor (G-CSF), parathormone (PTH) and signals from the SNS, stimuli that regulate both hematopoietic and mesenchymal lineages in the BM. Cell cycle studies from FACS-sorted, flushed BM samples have confirmed that CD45− Nes:GFP+ cells are much more quiescent (90% G0/G1) than CD45− Nes:GFP− cells (58% G0/G1) but are selectively induced to proliferate after chemical sympathectomy (61% G0/G1) or PTH (70% G0/G1) administration in mice (n = 4–5). The inhibitory effects of the SNS and G-CSF (95% G0/G1) on BM CD45− Nes:GFP+ cells were not limited to cell cycle but also involved osteoblastic differentiation and expression of HSC maintenance genes. By contrast, in vivo or in vitro treatment with PTH selectively induced proliferation and osteoblastic differentiation of CD45− Nes:GFP+ cells, which express PTH receptor 1. We generated selective cell depletion models by intercrossing Nes-Cre and Nes-CreERT2 mice with a Cre-inducible diphtheria toxin receptor line (iDTR). In both models, HSC numbers decreased by ∼ 50% in the BM and increased in the spleen, an effect directly caused by selective BM cell depletion, as per in vitro experiments. In the more specific Nes-CreERT2 model, this effect was specific for HSCs and not for more mature progenitors. Cell depletion in Nes-Cre / iDTR and Nes-CreERT2 / iDTR mice reduced homing of hematopoietic progenitors by 73 and 90%, respectively. Finally, combined two-photon and confocal microscopy of the calvarial BM has demonstrated that highly purified, labeled HSCs rapidly (≤ 2h) home near Nes:GFP+ cells. Thus, cytokines, hormones, and the SNS regulate both HSC maintenance and bone formation in the BM stem cell niche through direct control of nestin-expressing MSCs. These results uncover an unprecedented partnership between two distinct somatic stem cell types and argue for a unique peri-vascular niche in the BM formed by MSC-HSC pairs. Disclosures: Scadden: Fate Therapeutics: Consultancy. Frenette:Glycomimetic: Research Funding.


2017 ◽  
Vol 4 (S) ◽  
pp. 98
Author(s):  
P H Nguyen ◽  
J Giraud ◽  
C Staedel ◽  
L Chambonnier ◽  
P Dubus ◽  
...  

Gastric carcinoma is the third leading cause of cancer-related death worldwide. This cancer, most of the time metastatic, is essentially treated by surgery associated with conventional chemotherapy, and has a poor prognosis. The existence of cancer stem cells (CSC) expressing CD44 and a high aldehyde dehydrogenase (ALDH) activity has recently been demonstrated in gastric carcinoma and has opened new perspectives to develop targeted therapy. In this study, we evaluated the effects of all-transretinoic acid (ATRA) on CSCs in human gastric carcinoma. ATRA effects were evaluated on the proliferation and tumorigenic properties of gastric carcinoma cells from patient-derived tumors and cell lines in conventional 2D cultures, in 3D culture systems (tumorsphere assay) and in mouse xenograft models. ATRA inhibited both tumorspheres initiation and growth in vitro, which was associated with a cell-cycle arrest through the upregulation of cyclin-dependent kinase (CDK) inhibitors and the downregulation of cell-cycle progression activators. More importantly, ATRA downregulated the expression of the CSC markers CD44 and ALDH as well as stemness genes such as Klf4 and Sox2 and induced differentiation of tumorspheres. Finally, 2 weeks of daily ATRA treatment were sufficient to inhibit gastric tumor progression in vivo, which was associated with a decrease in CD44, ALDH1, Ki67 and PCNA expression in the remaining tumor cells. Administration of ATRA appears to be a potent strategy to efficiently inhibit tumor growth and more importantly to target gastric CSCs in both intestinal and diffuse types of gastric carcinoma.


2019 ◽  
Vol 51 (11) ◽  
pp. 1-20 ◽  
Author(s):  
Jun-Cheng Guo ◽  
Yi-Jun Yang ◽  
Jin-Fang Zheng ◽  
Jian-Quan Zhang ◽  
Min Guo ◽  
...  

AbstractHepatocellular carcinoma (HCC) is a major cause of cancer-related deaths, but its molecular mechanisms are not yet well characterized. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis, including that of HCC. However, the role of homeobox A11 antisense (HOXA11-AS) in determining HCC stem cell characteristics remains to be explained; hence, this study aimed to investigate the effects of HOXA11-AS on HCC stem cell characteristics. Initially, the expression patterns of HOXA11-AS and HOXA11 in HCC tissues, cells, and stem cells were determined. HCC stem cells, successfully sorted from Hep3B and Huh7 cells, were transfected with short hairpin or overexpression plasmids for HOXA11-AS or HOXA11 overexpression and depletion, with an aim to study the influences of these mediators on the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo. Additionally, the potential relationship and the regulatory mechanisms that link HOXA11-AS, HOXA11, and the Wnt signaling pathway were explored through treatment with Dickkopf-1 (a Wnt signaling pathway inhibitor). HCC stem cells showed high expression of HOXA11-AS and low expression of HOXA11. Both HOXA11-AS silencing and HOXA11 overexpression suppressed the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo, as evidenced by the decreased expression of cancer stem cell surface markers (CD133 and CD44) and stemness-related transcription factors (Nanog, Sox2, and Oct4). Moreover, silencing HOXA11-AS inactivated the Wnt signaling pathway by decreasing the methylation level of the HOXA11 promoter, thereby inhibiting HCC stem cell characteristics. Collectively, this study suggested that HOXA11-AS silencing exerts an antitumor effect, suppressing HCC development via Wnt signaling pathway inactivation by decreasing the methylation level of the HOXA11 promoter.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qing Xia ◽  
Tao Han ◽  
Pinghua Yang ◽  
Ruoyu Wang ◽  
Hengyu Li ◽  
...  

Background. MicroRNAs (miRNAs) play a critical role in the regulation of cancer stem cells (CSCs). However, the role of miRNAs in liver CSCs has not been fully elucidated. Methods. Real-time PCR was used to detect the expression of miR-miR-28-5p in liver cancer stem cells (CSCs). The impact of miR-28-5p on liver CSC expansion was investigated both in vivo and in vitro. The correlation between miR-28-5p expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results. Our data showed that miR-28-5p was downregulated in sorted EpCAM- and CD24-positive liver CSCs. Biofunctional investigations revealed that knockdown miR-28-5p promoted liver CSC self-renewal and tumorigenesis. Consistently, miR-28-5p overexpression inhibited liver CSC’s self-renewal and tumorigenesis. Mechanistically, we found that insulin-like growth factor-1 (IGF-1) was a direct target of miR-28-5p in liver CSCs, and the effects of miR-28-5p on liver CSC’s self-renewal and tumorigenesis were dependent on IGF-1. The correlation between miR-28-5p and IGF-1 was confirmed in human HCC tissues. Furthermore, the miR-28-5p knockdown HCC cells were more sensitive to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-28-5p may predict sorafenib benefits in HCC patients. Conclusion. Our findings revealed the crucial role of the miR-28-5p in liver CSC expansion and sorafenib response, rendering miR-28-5p an optimal therapeutic target for HCC.


2020 ◽  
pp. jbc.RA120.015335
Author(s):  
Yuan Deng ◽  
Ming Li ◽  
Minghui Zhuo ◽  
Peng Guo ◽  
Qiang Chen ◽  
...  

Cancer stem-like cells (CSCs) contribute to the high rate of tumor heterogeneity, metastasis, therapeutic resistance, and recurrence. Histone lysine demethylase 4D (KDM4D or JMJD2D) is highly expressed in colon and liver tumors, where it promotes cancer progression; however, the role of JMJD2D in CSCs remains unclear. Here, we show that JMJD2D expression was increased in liver cancer stem-like cells (LCSCs); downregulation of JMJD2D inhibited the self-renewal of LCSCs in vitro and in vivo and inhibited the lung metastasis of LCSCs by reducing the survival and the early lung seeding of circulating LCSCs. Mechanistically, JMJD2D promoted LCSC self-renewal by enhancing the expression of CSC markers EpCAM and Sox9; JMJD2D reduced H3K9me3 levels on the promoters of EpCAM and Sox9 to enhance their transcription via interaction with β-catenin/TCF4 and Notch1 intracellular domain, respectively. Restoration of EpCAM and Sox9 expression in JMJD2D-knockdown liver cancer cells rescued the self-renewal of LCSCs. Pharmacological inhibition of JMJD2D using 5-c-8HQ reduced the self-renewal of LCSCs and liver cancer progression. Collectively, our findings suggest that JMJD2D promotes LCSC self-renewal by enhancing EpCAM and Sox9 expression via Wnt/β-catenin and Notch signaling pathways and is a potential therapeutic target for liver cancer.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 405-405
Author(s):  
Kenichi Miharada ◽  
Göran Karlsson ◽  
Jonas Larsson ◽  
Emma Larsson ◽  
Kavitha Siva ◽  
...  

Abstract Abstract 405 Cripto is a member of the EGF-CFC soluble protein family and has been identified as an important factor for the proliferation/self-renewal of ES and several types of tumor cells. The role for Cripto in the regulation of hematopoietic cells has been unknown. Here we show that Cripto is a potential new candidate factor to increase self-renewal and expand hematopoietic stem cells (HSCs) in vitro. The expression level of Cripto was analyzed by qRT-PCR in several purified murine hematopoietic cell populations. The findings demonstrated that purified CD34-KSL cells, known as highly concentrated HSC population, had higher expression levels than other hematopoietic progenitor populations including CD34+KSL cells. We asked how Cripto regulates HSCs by using recombinant mouse Cripto (rmCripto) for in vitro and in vivo experiments. First we tested the effects of rmCripto on purified hematopoietic stem cells (CD34-LSK) in vitro. After two weeks culture in serum free media supplemented with 100ng/ml of SCF, TPO and 500ng/ml of rmCripto, 30 of CD34-KSL cells formed over 1,300 of colonies, including over 60 of GEMM colonies, while control cultures without rmCripto generated few colonies and no GEMM colonies (p<0.001). Next, 20 of CD34-KSL cells were cultured with or without rmCripto for 2 weeks and transplanted to lethally irradiated mice in a competitive setting. Cripto treated donor cells showed a low level of reconstitution (4–12%) in the peripheral blood, while cells cultured without rmCripto failed to reconstitute. To define the target population and the mechanism of Cripto action, we analyzed two cell surface proteins, GRP78 and Glypican-1, as potential receptor candidates for Cripto regulation of HSC. Surprisingly, CD34-KSL cells were divided into two distinct populations where HSC expressing GRP78 exhibited robust expansion of CFU-GEMM progenitor mediated by rmCripto in CFU-assay whereas GRP78- HSC did not respond (1/3 of CD34-KSL cells were GRP78+). Furthermore, a neutralization antibody for GRP78 completely inhibited the effect of Cripto in both CFU-assay and transplantation assay. In contrast, all lineage negative cells were Glypican-1 positive. These results suggest that GRP78 must be the functional receptor for Cripto on HSC. We therefore sorted these two GRP78+CD34-KSL (GRP78+HSC) and GRP78-CD34-KSL (GRP78-HSC) populations and transplanted to lethally irradiated mice using freshly isolated cells and cells cultured with or without rmCripto for 2 weeks. Interestingly, fresh GRP78-HSCs showed higher reconstitution than GRP78+HSCs (58–82% and 8–40%, p=0.0038) and the reconstitution level in peripheral blood increased rapidly. In contrast, GRP78+HSC reconstituted the peripheral blood slowly, still at a lower level than GRP78-HSC 4 months after transplantation. However, rmCripto selectively expanded (or maintained) GRP78+HSCs but not GRP78-HSCs after culture and generated a similar level of reconstitution as freshly transplanted cells (12–35%). Finally, bone marrow cells of engrafted recipient mice were analyzed at 5 months after transplantation. Surprisingly, GRP78+HSC cultured with rmCripto showed higher reconstitution of the CD34-KSL population in the recipients' bone marrow (45–54%, p=0.0026), while the reconstitution in peripheral blood and in total bone marrow was almost the same. Additionally, most reconstituted CD34-KSL population was GRP78+. Interestingly freshly transplanted sorted GRP78+HSC and GRP78-HSC can produce the GRP78− and GRP78+ populations in the bone marrow and the ratio of GRP78+/− cells that were regenerated have the same proportion as the original donor mice. Compared to cultured cells, the level of reconstitution (peripheral blood, total bone marrow, HSC) in the recipient mice was almost similar. These results indicate that the GRP78 expression on HSC is reversible, but it seems to be “fixed” into an immature stage and differentiate with lower efficiency toward mature cells after long/strong exposure to Cripto signaling. Based on these findings, we propose that Cripto is a novel factor that maintains HSC in an immature state and may be a potent candidate for expansion of a distinct population of GRP78 expressing HSC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3538-3538
Author(s):  
Lin Zou ◽  
Shan Liu ◽  
Yi Shu ◽  
Ru Qin ◽  
Kang Li ◽  
...  

Abstract Background Leukemia is the most common malignant tumor in children under 15 years old. The main subtype of children leukemia is acute lymphoblastic leukemia (ALL), and B-lineage ALL (B-ALL) accounts for approximately 70%. The leukemia-initiating cells (LICs) are cancer stem cells with long-term repopulating potential and propagation ability, to maintain the leukemia cell phenotype, and possess leukemia-initiating activity. However, the regulation of LICs for the leukemia progression is poorly understood. The multifunctional scaffold proteins β-arrestins are proven to mediate H4 acetylation and gene expression. And β-arrestin2 is found to regulate the initiation and progression of chronic myeloid leukemia (CML). However, the role of β-arrestin1 in B-ALL is still unknown. Our preliminary data showed that both the high expression of β-arrestin1 and high proportion of CD34+CD38- cells are positively correlated with risk stratification and poor prognosis of childhood B-ALL. And β-arrestin1 binds with EZH2 to increase BCR/ABL H4 acetylation and thus promotes CML cell progression in vitro and in vivo. The aim of study is to investigate the essential function of β-arrestin1 in LICs from B-ALL. Materials and Methods The bone marrow (BM) and periphery blood (PB) of children B-ALL patients were collected, isolated and identified LICs by Magnetic-activated cell sorting (MACS) and flow cytometry. The total RNA and protein were purified for gene and protein expression by real-time RT-PCR and Western blot. The leukemia cells (LICs, Raji, and Reh) of β-arrestin1 depletion were constructed by transient or stable screening si-β-arrestin1 (siβ1) lentivirus vector. The serial cell colony formation and NSG mice survival analysis was measured the LICs self-renewal ability. The CCK8 and MTS assays were used to detect the cell proliferation, and annexin V-FITC and PI staining for cell apoptosis. The DNA methylation of gene promoter region was detected by methylation-specific PCR and the methltransferase activity by ELISA. The telomere length was indicated by Southern blot and FISH, and telomerase activity by TRAP. Electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay were applied to explain gene transcription. Student’s t test and Log-Rank test were used in the corresponding statistical significance and P<0.05 were considered significant. All the statistical analysis was performed using the GraphPad Prism (Version 5.0) software packages and SPSS 17.0. Results The expression of β-arrestin1 was elevated in LICs from B-ALL patients, and the high level of β-arrestin1 was negatively correlated with the survival of these patients. Further study showed that the loss of β-arrestin1 in B-ALL LICs attenuates their self-renewal capacity and promotes their senescence in vitro and in vivo. The mRNA expression level of β-arrestin1 is negatively correlated with that of PTEN in LICs. Moreover, the DNA methylation of the PTEN promoter region, the activity and the expression of DNMTs were enhanced in the LICs. The inhibition of DNMT1 activity impaired the self-renewal and increased the expression of PTEN of LICs. In addition, depletion of β-arrestin1 significantly decreased DNMT1 activity and PTEN methylation, and consistently increased PTEN expression in LICs. For B-ALL cell senescence, the mRNA expression level of β-arrestin1 is negatively related with the length of telomere, positively related with the activity of telomerase and the mRNA expression of hTERT in B-ALL LICs and engrafted NSG mice. Moreover, the weakened effect of β-arrestin1 on telomere, telomerase and the gene of hTERT were observed by injected the inhibitor of telomerase in leukemic mice. In addition, depletion of β-arrestin1 significantly decreased the binding of SP1 to the promoter of hTERT and thus reduced the transcription of hTERT in B-ALL Raji and Reh cells. Furthermore, β-arrestin1 interacted with P300 to bind with SP1 in the -104bp to -113bp of hTERT core promoter region in B-ALL cells. Conclusions β-arrestin1 could regulate the self-renewal and senescence of LICs from B-ALL, by partially mediating DNMT1 activity and hTERT transcription respectively, indicating that β-arrestin1 is a potential therapeutic target for B-ALL. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document