scholarly journals ID: 1023 All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth

2017 ◽  
Vol 4 (S) ◽  
pp. 98
Author(s):  
P H Nguyen ◽  
J Giraud ◽  
C Staedel ◽  
L Chambonnier ◽  
P Dubus ◽  
...  

Gastric carcinoma is the third leading cause of cancer-related death worldwide. This cancer, most of the time metastatic, is essentially treated by surgery associated with conventional chemotherapy, and has a poor prognosis. The existence of cancer stem cells (CSC) expressing CD44 and a high aldehyde dehydrogenase (ALDH) activity has recently been demonstrated in gastric carcinoma and has opened new perspectives to develop targeted therapy. In this study, we evaluated the effects of all-transretinoic acid (ATRA) on CSCs in human gastric carcinoma. ATRA effects were evaluated on the proliferation and tumorigenic properties of gastric carcinoma cells from patient-derived tumors and cell lines in conventional 2D cultures, in 3D culture systems (tumorsphere assay) and in mouse xenograft models. ATRA inhibited both tumorspheres initiation and growth in vitro, which was associated with a cell-cycle arrest through the upregulation of cyclin-dependent kinase (CDK) inhibitors and the downregulation of cell-cycle progression activators. More importantly, ATRA downregulated the expression of the CSC markers CD44 and ALDH as well as stemness genes such as Klf4 and Sox2 and induced differentiation of tumorspheres. Finally, 2 weeks of daily ATRA treatment were sufficient to inhibit gastric tumor progression in vivo, which was associated with a decrease in CD44, ALDH1, Ki67 and PCNA expression in the remaining tumor cells. Administration of ATRA appears to be a potent strategy to efficiently inhibit tumor growth and more importantly to target gastric CSCs in both intestinal and diffuse types of gastric carcinoma.

Oncogenesis ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Yang Sun ◽  
Chen Ye ◽  
Wen Tian ◽  
Wen Ye ◽  
Yuan-Yuan Gao ◽  
...  

AbstractTransient receptor potential canonical (TRPC) channels are the most prominent nonselective cation channels involved in various diseases. However, the function, clinical significance, and molecular mechanism of TRPCs in colorectal cancer (CRC) progression remain unclear. In this study, we identified that TRPC1 was the major variant gene of the TRPC family in CRC patients. TRPC1 was upregulated in CRC tissues compared with adjacent normal tissues and high expression of TRPC1 was associated with more aggressive tumor progression and poor overall survival. TRPC1 knockdown inhibited cell proliferation, cell-cycle progression, invasion, and migration in vitro, as well as tumor growth in vivo; whereas TRPC1 overexpression promoted colorectal tumor growth and metastasis in vitro and in vivo. In addition, colorectal tumorigenesis was significantly attenuated in Trpc1-/- mice. Mechanistically, TRPC1 could enhance the interaction between calmodulin (CaM) and the PI3K p85 subunit by directly binding to CaM, which further activated the PI3K/AKT and its downstream signaling molecules implicated in cell cycle progression and epithelial-mesenchymal transition. Silencing of CaM attenuated the oncogenic effects of TRPC1. Taken together, these results provide evidence that TRPC1 plays a pivotal oncogenic role in colorectal tumorigenesis and tumor progression by activating CaM-mediated PI3K/AKT signaling axis. Targeting TRPC1 represents a novel and specific approach for CRC treatment.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Yu-Mei Liao ◽  
Ya-Hui Wang ◽  
Jung-Tung Hung ◽  
Yu-Ju Lin ◽  
Yen-Lin Huang ◽  
...  

Abstract Background Existence of breast cancer stem cells (BCSCs) is implicated in disease relapse, metastasis, and resistance of treatment. β1,3-Galactosyltransferase 5 (B3GALT5) has been shown to be a pro-survival marker for BCSCs. However, little is known about the prognostic significance of B3GALT5 in breast cancer. Methods Paired tissues (tumor part and adjacent non-tumor part) from a cohort of 202 women with breast cancer were used to determine the expression levels of B3GALT5 mRNA by qRT-PCR. Kaplan–Meier and multivariable Cox proportional hazard models were used to assess survival differences in terms of relapse-free survival (RFS) and overall survival (OS). Both breast cancer cells and cancer stem cells (BCSCs) were used to see the in vitro effects of knockdown or overexpression of B3GALT5 on cell migration, invasion, and epithelial-to-mesenchymal transition (EMT). A patient-derived xenograft (PDX) model was used to see the in vivo effects of knockdown of B3GALT5 in BCSCs on tumor growth and metastasis. Results Higher expression of B3GALT5 in 202 breast cancer tissues, especially in adjacent non-tumor tissue, correlated with poor clinical outcomes including shorter OS and RFS in all patients, especially those with early stage breast cancer. In vitro studies showed B3GALT5 could enhance cell migration, invasion, mammosphere formation, and EMT. Of note, B3GALT5 upregulated the expression of β-catenin and EMT activator zinc finger E-box binding homeobox 1 (ZEB1) pathway in BCSCs. In vivo studies showed B3GALT5 expression in BCSCs is critical for not only tumor growth but also lymph node and lung metastasis in PDX mice. Conclusion Our results demonstrated the value of B3GALT5 as a prognostic marker of breast cancer, especially among the early stage patients, and its crucial roles in regulating EMT, cell migration, and stemness thereby promoting breast cancer progression.


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
Shiv Kumar ◽  
Jaebong Kim

Mitotic kinases are the key components of the cell cycle machinery and play vital roles in cell cycle progression. PLK-1 (Polo-like kinase-1) is a crucial mitotic protein kinase that plays an essential role in both the onset of G2/M transition and cytokinesis. The overexpression of PLK-1 is strongly correlated with a wide spectrum of human cancers and poor prognosis. The (si)RNA-mediated depletion of PLK-1 arrests tumor growth and triggers apoptosis in cancer cells without affecting normal cells. Therefore, PLK-1 has been selected as an attractive anticancer therapeutic drug target. Some small molecules have been discovered to target the catalytic and noncatalytic domains of PLK-1. These domains regulate the catalytic activation and subcellular localization of PLK-1. However, while PLK-1 inhibitors block tumor growth, they have been shown to cause severe adverse complications, such as toxicity, neutropenia, and bone marrow suppression during clinical trials, due to a lack of selectivity and specificity within the human kinome. To minimize these toxicities, inhibitors should be tested against all protein kinasesin vivoandin vitroto enhance selectivity and specificity against targets. Here, we discuss the potency and selectivity of PLK-1-targeted inhibitors and their molecular interactions with PLK-1 domains.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yantao Liu ◽  
Yuping Yang ◽  
Lingli Zhang ◽  
Jiaqiang Lin ◽  
Bin Li ◽  
...  

Abstract Background Non-small cell lung cancer (NSCLC) is a major cause of cancer-related death worldwide, and cancer stem cell is responsible for the poor clinical outcome of NSCLC. Previous reports indicated that long noncoding RNAs (lncRNAs) play important roles in maintaining cancer stemness, however, the underlying mechanisms remain unclear. This study investigates the role of ASAP1 Intronic Transcript 1 (ASAP1-IT1) in cancer cell stemness of NSCLC. Methods The expression of ASAP1-IT1, microRNA-509-3p (miR-509-3p) and apoptosis-/stemness-related genes was analyzed by qRT-PCR in NSCLC tissues, cancer cells and spheres of cancer stem cells. Knockdown of ASAP1-IT1 or overexpression of miR-509-3p in NSCLC cells by infection or transfection of respective plasmids. Sphere formation and colony formation were used to detect NSCLC stem cell-like properties and tumor growth in vitro. Luciferase reporter assays, RNA immunoprecitation (RIP) and qRT-PCR assays were used to analyze the interaction between lncRNA and miRNA. The expression of expression of regulated genes of ASAP1-IT1/miR-509-3p axis was evaluated by qRT-PCR and Western blot. The NSCLC xenograft mouse model was used to validate the role of ASAP1-IT1 in NSCLC stemness and tumor growth in vivo. Results ASAP1-IT1 was up-regulated in NSCLC tissues, cancer cells, and in spheres of A549-derived cancer stem cells. Downregulation of ASAP1-IT1 or overexpression of miR-509-3p significantly decreased cell colony formation and stem cell-like properties of A549-dereived stem cells with decreased expression of stem cell biomarkers SOX2, CD34, and CD133, and suppressing the expression of cell growth-related genes, Cyclin A1, Cyclin B1, and PCNA. Furthermore, knockdown of ASAP1-IT1 or overexpression of miR-509-3p repressed tumor growth in nude mice via reducing expression of tumorigenic genes. ASAP1-IT1 was found to interact with miR-509-3p. Moreover, overexpression of ASAP1-IT1 blocked the inhibition by miR-509-3p on stem cell-like properties and cell growth of A549-dereived stem cells both in vitro and in vivo. Finally, the level of YAP1 was regulated by ASAP1-IT1 and miR-509-3p. Conclusions YAP1-involved ASAP1-IT1/miR-509-3p axis promoted NSCLC progression by regulating cancer cell stemness, and targeting this signaling pathway could be is a promising therapeutic strategy to overcome NSCLC stemness.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jing-Yan Cheng ◽  
Jung-Tung Hung ◽  
Juway Lin ◽  
Fei-Yun Lo ◽  
Jing-Rong Huang ◽  
...  

SynopsisA sugar-lipid molecule called OAcGD2 is a novel marker for breast cancer stem cells. Treatment with anti-OAcGD2 mAb8B6 may have superior anticancer efficacy by targeting cancer stem cells, thereby reducing metastasis and recurrence of cancer.BackgroundCancer stem cells (CSCs) that drive tumor progression and disease recurrence are rare subsets of tumor cells. CSCs are relatively resistant to conventional chemotherapy and radiotherapy. Eradication of CSCs is thus essential to achieve durable responses. GD2 was reported to be a CSC marker in human triple-negative breast cancer, and anti-GD2 immunotherapy showed reduced tumor growth in cell lines. Using a specific anti-OAcGD2 antibody, mAb8D6, we set out to determine whether OAcGD2+ cells exhibit stem cell properties and mAb8D6 can inhibit tumor growth by targeting OAcGD2+CSCs.MethodOAcGD2 expression in patient-derived xenografts (PDXs) of breast cancer was determined by flow cytometric analyses using mAb8D6. The stemness of OAcGD2+ cells isolated by sorting and the effects of mAb8B6 were assessed by CSC growth and mammosphere formation in vitro and tumor growth in vivo using PDX models.ResultWe found that the OAcGD2 expression levels in six PDXs of various molecular subtypes of breast cancer highly correlated with their previously defined CSC markers in these PDXs. The sorted OAcGD2+ cells displayed a greater capacity for mammosphere formation in vitro and tumor initiation in vivo than OAcGD2− cells. In addition, the majority of OAcGD2+ cells were aldehyde dehydrogenase (ALDH+) or CD44hiCD24lo, the known CSC markers in breast cancer. Treatment of PDXs-bearing mice with mAb8B6, but not doxorubicin, suppressed the tumor growth, along with reduced CSCs as assessed by CSC markers and in vivo tumorigenicity. In vitro, mAb8B6 suppressed proliferation and mammosphere formation and induced apoptosis of OAcGD2+ breast cancer cells harvested from PDXs, in a dose-dependent manner. Finally, administration of mAb8B6 in vivo dramatically suppressed tumor growth of OAcGD2+ breast CSCs (BCSCs) with complete tumor abrogation in 3/6 mice.ConclusionOAcGD2 is a novel marker for CSC in various subtypes of breast cancer. Anti-OAcGD2 mAb8B6 directly eradicated OAcGD2+ cells and reduced tumor growth in PDX model. Our data demonstrate the potential of mAb8B6 as a promising immunotherapeutic agent to target BCSCs.


Author(s):  
Ran Zhao ◽  
Yukun Liu ◽  
Chunchun Wu ◽  
Mengna Li ◽  
Yanmei Wei ◽  
...  

BRD7 functions as a crucial tumor suppressor in numerous malignancies. However, the effects of BRD7 on colorectal cancer (CRC) progression are still unknown. Here, based on the BRD7 knockout (BRD7–/–) and BRD7flox/flox (BRD7+/+) mouse models constructed in our previous work, we established an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse model. BRD7+/+ mice were found to be highly susceptible to AOM/DSS-induced colitis-associated CRC, and BRD7 significantly promoted cell proliferation and cell cycle G1/S transition but showed no significant effect on cell apoptosis. Furthermore, BRD7 interacted with c-Myc and stabilized c-Myc by inhibiting its ubiquitin–proteasome-dependent degradation. Moreover, restoring the expression of c-Myc in BRD7-silenced CRC cells restored cell proliferation, cell cycle progression, and tumor growth in vitro and in vivo. In addition, BRD7 and c-Myc were both significantly upregulated in CRC patients, and high expression of these proteins was associated with clinical stage and poor prognosis in CRC patients. Collectively, BRD7 functions as an oncogene and promotes CRC progression by regulating the ubiquitin–proteasome-dependent stabilization of c-Myc protein. Targeting the BRD7/c-Myc axis could be a potential therapeutic strategy for CRC.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Haiying Yue ◽  
Dongning Huang ◽  
Li Qin ◽  
Zhiyong Zheng ◽  
Li Hua ◽  
...  

Lung cancer stem cells are a subpopulation of cells critical for lung cancer progression, metastasis, and drug resistance. Thioridazine, a classical neurological drug, has been reported with anticancer ability. However, whether thioridazine could inhibit lung cancer stem cells has never been studied. In our current work, we used different dosage of thioridazine to test its effect on lung cancer stem cells sphere formation. The response of lung cancer stem cells to chemotherapy drug with thioridazine treatment was measured. The cell cycle distribution of lung cancer stem cells after thioridazine treatment was detected. The in vivo inhibitory effect of thioridazine was also measured. We found that thioridazine could dramatically inhibit sphere formation of lung cancer stem cells. It sensitized the LCSCs to chemotherapeutic drugs 5-FU and cisplatin. Thioridazine altered the cell cycle distribution of LCSCs and decreased the proportion of G0 phase cells in lung cancer stem cells. Thioridazine inhibited lung cancer stem cells initiated tumors growth in vivo. This study showed that thioridazine could inhibit lung cancer stem cells in vitro and in vivo. It provides a potential drug for lung cancer therapy through targeting lung cancer stem cells.


Sign in / Sign up

Export Citation Format

Share Document