scholarly journals Hospitals with and without neurosurgery: a comparative study evaluating the outcome of patients with traumatic brain injury

Author(s):  
Aimone Giugni ◽  
Lorenzo Gamberini ◽  
Greta Carrara ◽  
Luca Antiga ◽  
Obou Brissy ◽  
...  

Abstract Background We leveraged the data of the international CREACTIVE consortium to investigate whether the outcome of traumatic brain injury (TBI) patients admitted to intensive care units (ICU) in hospitals without on-site neurosurgical capabilities (no-NSH) would differ had the same patients been admitted to ICUs in hospitals with neurosurgical capabilities (NSH). Methods The CREACTIVE observational study enrolled more than 8000 patients from 83 ICUs. Adult TBI patients admitted to no-NSH ICUs within 48 h of trauma were propensity-score matched 1:3 with patients admitted to NSH ICUs. The primary outcome was the 6-month extended Glasgow Outcome Scale (GOS-E), while secondary outcomes were ICU and hospital mortality. Results A total of 232 patients, less than 5% of the eligible cohort, were admitted to no-NSH ICUs. Each of them was matched to 3 NSH patients, leading to a study sample of 928 TBI patients where the no-NSH and NSH groups were well-balanced with respect to all of the variables included into the propensity score. Patients admitted to no-NSH ICUs experienced significantly higher ICU and in-hospital mortality. Compared to the matched NSH ICU admissions, their 6-month GOS-E scores showed a significantly higher prevalence of upper good recovery for cases with mild TBI and low expected mortality risk at admission, along with a progressively higher incidence of poor outcomes with increased TBI severity and mortality risk. Conclusions In our study, centralization of TBI patients significantly impacted short- and long-term outcomes. For TBI patients admitted to no-NSH centers, our results suggest that the least critically ill can effectively be managed in centers without neurosurgical capabilities. Conversely, the most complex patients would benefit from being treated in high-volume, neuro-oriented ICUs.

Author(s):  
Maximilian Peter Forssten ◽  
Gary Alan Bass ◽  
Kai-Michael Scheufler ◽  
Ahmad Mohammad Ismail ◽  
Yang Cao ◽  
...  

Abstract Purpose Traumatic brain injury (TBI) continues to be a significant cause of mortality and morbidity worldwide. As cardiovascular events are among the most common extracranial causes of death after a severe TBI, the Revised Cardiac Risk Index (RCRI) could potentially aid in the risk stratification of this patient population. This investigation aimed to determine the association between the RCRI and in-hospital deaths among isolated severe TBI patients. Methods All adult patients registered in the TQIP database between 2013 and 2017 who suffered an isolated severe TBI, defined as a head AIS ≥ 3 with an AIS ≤ 1 in all other body regions, were included. Patients were excluded if they had a head AIS of 6. The association between different RCRI scores (0, 1, 2, 3, ≥ 4) and in-hospital mortality was analyzed using a Poisson regression model with robust standard errors while adjusting for potential confounders, with RCRI 0 as the reference. Results 259,399 patients met the study’s inclusion criteria. RCRI 2 was associated with a 6% increase in mortality risk [adjusted IRR (95% CI) 1.06 (1.01–1.12), p = 0.027], RCRI 3 was associated with a 17% increased risk of mortality [adjusted IRR (95% CI) 1.17 (1.05–1.31), p = 0.004], and RCRI ≥ 4 was associated with a 46% increased risk of in-hospital mortality [adjusted IRR(95% CI) 1.46 (1.11–1.90), p = 0.006], compared to RCRI 0. Conclusion An elevated RCRI ≥ 2 is significantly associated with an increased risk of in-hospital mortality among patients with an isolated severe traumatic brain injury. The simplicity and bedside applicability of the index makes it an attractive choice for risk stratification in this patient population.


2019 ◽  
Vol 111 (2) ◽  
pp. 378-384 ◽  
Author(s):  
Hiroyuki Ohbe ◽  
Taisuke Jo ◽  
Hiroki Matsui ◽  
Kiyohide Fushimi ◽  
Hideo Yasunaga

ABSTRACT Background Whether enteral nutrition (EN) should be administered early in severe traumatic brain injury (TBI) patients has not been fully addressed. Objective The present study aimed to evaluate whether early EN can reduce mortality or nosocomial pneumonia among severe TBI patients. Methods Using the Japanese Diagnosis Procedure Combination inpatient database from April 2014 to March 2017 linked with the Survey for Medical Institutions, we identified patients admitted for intracranial injury with Japan Coma Scale scores ≥30 (corresponding to Glasgow Coma Scale scores ≤8) at admission. We designated patients who started EN within 2 d of admission as the early EN group, and those who started EN at 3–5 d after admission as the delayed EN group. The primary outcome was in-hospital mortality. The secondary outcome was nosocomial pneumonia. Propensity score–matched analyses were performed to compare the outcomes between the 2 groups. Results We identified 3080 eligible patients during the 36-mo study period, comprising 1100 (36%) in the early EN group and 1980 (64%) in the delayed EN group. After propensity score matching, there was no significant difference in in-hospital mortality (difference: −0.3%; 95% CI: −3.7%, 3.1%) between the 2 groups. The proportion of nosocomial pneumonia was significantly lower in the early EN group than in the delayed EN group (difference: −3.2%; 95% CI: −5.9%, −0.4%). Conclusions Early EN may not reduce mortality, but may reduce nosocomial pneumonia in patients with severe TBI.


Critical Care ◽  
2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Josefine S. Baekgaard ◽  
◽  
Paer-Selim Abback ◽  
Marouane Boubaya ◽  
Jean-Denis Moyer ◽  
...  

Abstract Background Hyperoxemia has been associated with increased mortality in critically ill patients, but little is known about its effect in trauma patients. The objective of this study was to assess the association between early hyperoxemia and in-hospital mortality after severe trauma. We hypothesized that a PaO2 ≥ 150 mmHg on admission was associated with increased in-hospital mortality. Methods Using data issued from a multicenter prospective trauma registry in France, we included trauma patients managed by the emergency medical services between May 2016 and March 2019 and admitted to a level I trauma center. Early hyperoxemia was defined as an arterial oxygen tension (PaO2) above 150 mmHg measured on hospital admission. In-hospital mortality was compared between normoxemic (150 > PaO2 ≥ 60 mmHg) and hyperoxemic patients using a propensity-score model with predetermined variables (gender, age, prehospital heart rate and systolic blood pressure, temperature, hemoglobin and arterial lactate, use of mechanical ventilation, presence of traumatic brain injury (TBI), initial Glasgow Coma Scale score, Injury Severity Score (ISS), American Society of Anesthesiologists physical health class > I, and presence of hemorrhagic shock). Results A total of 5912 patients were analyzed. The median age was 39 [26–55] years and 78% were male. More than half (53%) of the patients had an ISS above 15, and 32% had traumatic brain injury. On univariate analysis, the in-hospital mortality was higher in hyperoxemic patients compared to normoxemic patients (12% versus 9%, p < 0.0001). However, after propensity score matching, we found a significantly lower in-hospital mortality in hyperoxemic patients compared to normoxemic patients (OR 0.59 [0.50–0.70], p < 0.0001). Conclusion In this large observational study, early hyperoxemia in trauma patients was associated with reduced adjusted in-hospital mortality. This result contrasts the unadjusted in-hospital mortality as well as numerous other findings reported in acutely and critically ill patients. The study calls for a randomized clinical trial to further investigate this association.


2021 ◽  
Vol 10 (5) ◽  
pp. 1072 ◽  
Author(s):  
Chiaki Toida ◽  
Takashi Muguruma ◽  
Masayasu Gakumazawa ◽  
Mafumi Shinohara ◽  
Takeru Abe ◽  
...  

Traumatic brain injury (TBI) is the major cause of mortality and morbidity in severely-injured patients worldwide. This retrospective nationwide study aimed to evaluate the age- and severity-related in-hospital mortality trends and mortality risks of patients with severe TBI from 2009 to 2018 to establish effective injury prevention measures. We retrieved information from the Japan Trauma Data Bank dataset between 2009 and 2018. The inclusion criteria for this study were patients with severe TBI defined as those with an Injury Severity Score ≥ 16 and TBI. In total, 31,953 patients with severe TBI (32.6%) were included. There were significant age-related differences in characteristics, mortality trend, and mortality risk in patients with severe TBI. The in-hospital mortality trend of all patients with severe TBI significantly decreased but did not improve for patients aged ≤ 5 years and with a Glasgow Coma Scale (GCS) score between 3 and 8. Severe TBI, age ≥ 65 years, fall from height, GCS score 3–8, and urgent blood transfusion need were associated with a higher mortality risk, and mortality risk did not decrease after 2013. Physicians should consider specific strategies when treating patients with any of these risk factors to reduce severe TBI mortality.


2021 ◽  
Vol 12 (02) ◽  
pp. 368-375
Author(s):  
Mini Jayan ◽  
Dhaval Shukla ◽  
Bhagavatula Indira Devi ◽  
Dhananjaya I. Bhat ◽  
Subhas K. Konar

Abstract Objectives We aimed to develop a prognostic model for the prediction of in-hospital mortality in patients with traumatic brain injury (TBI) admitted to the neurosurgery intensive care unit (ICU) of our institute. Materials and Methods The clinical and computed tomography scan data of consecutive patients admitted after a diagnosis TBI in ICU were reviewed. Construction of the model was done by using all the variables of Corticosteroid Randomization after Significant Head Injury and International Mission on Prognosis and Analysis of Clinical Trials in TBI models. The endpoint was in-hospital mortality. Results A total of 243 patients with TBI were admitted to ICU during the study period. The in-hospital mortality was 15.3%. On multivariate analysis, the Glasgow coma scale (GCS) at admission, hypoxia, hypotension, and obliteration of the third ventricle/basal cisterns were significantly associated with mortality. Patients with hypoxia had eight times, with hypotensions 22 times, and with obliteration of the third ventricle/basal cisterns three times more chance of death. The TBI score was developed as a sum of individual points assigned as follows: GCS score 3 to 4 (+2 points), 5 to 12 (+1), hypoxia (+1), hypotension (+1), and obliteration third ventricle/basal cistern (+1). The mortality was 0% for a score of “0” and 85% for a score of “4.” Conclusion The outcome of patients treated in ICU was based on common admission variables. A simple clinical grading score allows risk stratification of patients with TBI admitted in ICU.


Author(s):  
Yu-Chin Tsai ◽  
Shao-Chun Wu ◽  
Ting-Min Hsieh ◽  
Hang-Tsung Liu ◽  
Chun-Ying Huang ◽  
...  

Thank you for Eduardo Mekitarian Filho’s appreciation of our work on the study of stress-induced hyperglycemia (SIH) and diabetic hyperglycemia (DH) in patients with traumatic brain injuries [...]


Brain Injury ◽  
2021 ◽  
pp. 1-9
Author(s):  
Mohammad Asim ◽  
Ayman El-Menyar ◽  
Ashok Parchani ◽  
Syed Nabir ◽  
Mohamed Nadeem Ahmed ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8276
Author(s):  
Pen-Sen Huang ◽  
Ping-Yen Tsai ◽  
Ling-Yu Yang ◽  
Daniela Lecca ◽  
Weiming Luo ◽  
...  

Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide. It can instigate immediate cell death, followed by a time-dependent secondary injury that results from disproportionate microglial and astrocyte activation, excessive inflammation and oxidative stress in brain tissue, culminating in both short- and long-term cognitive dysfunction and behavioral deficits. Within the brain, the hippocampus is particularly vulnerable to a TBI. We studied a new pomalidomide (Pom) analog, namely, 3,6′-dithioPom (DP), and Pom as immunomodulatory imide drugs (IMiD) for mitigating TBI-induced hippocampal neurodegeneration, microgliosis, astrogliosis and behavioral impairments in a controlled cortical impact (CCI) model of TBI in rats. Both agents were administered as a single intravenous dose (0.5 mg/kg) at 5 h post injury so that the efficacies could be compared. Pom and DP significantly reduced the contusion volume evaluated at 24 h and 7 days post injury. Both agents ameliorated short-term memory deficits and anxiety behavior at 7 days after a TBI. The number of degenerating neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus after a TBI was reduced by Pom and DP. DP, but not Pom, significantly attenuated the TBI-induced microgliosis and DP was more efficacious than Pom at attenuating the TBI-induced astrogliosis in CA1 and DG at 7D after a TBI. In summary, a single intravenous injection of Pom or DP, given 5 h post TBI, significantly reduced hippocampal neurodegeneration and prevented cognitive deficits with a concomitant attenuation of the neuroinflammation in the hippocampus.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e047305
Author(s):  
Susan Alcock ◽  
Divjeet Batoo ◽  
Sudharsana Rao Ande ◽  
Rob Grierson ◽  
Marco Essig ◽  
...  

IntroductionSevere traumatic brain injury (TBI) is a catastrophic neurological condition with significant economic burden. Early in-hospital mortality (<48 hours) with severe TBI is estimated at 50%. Several clinical examinations exist to determine brain death; however, most are difficult to elicit in the acute setting in patients with severe TBI. Having a definitive assessment tool would help predict early in-hospital mortality in this population. CT perfusion (CTP) has shown promise diagnosing early in-hospital mortality in patients with severe TBI and other populations. The purpose of this study is to validate admission CTP features of brain death relative to the clinical examination outcome for characterizing early in-hospital mortality in patients with severe TBI.Methods and analysisThe Early Diagnosis of Mortality using Admission CT Perfusion in Severe Traumatic Brain Injury Patients study, is a prospective cohort study in patients with severe TBI funded by a grant from the Canadian Institute of Health Research. Adults aged 18 or older, with evidence of a severe TBI (Glasgow Coma Scale score ≤8 before initial resuscitation) and, on mechanical ventilation at the time of imaging are eligible. Patients will undergo CTP at the time of first imaging on their hospital admission. Admission CTP compares with the reference standard of an accepted bedside clinical assessment for brainstem function. Deferred consent will be used. The primary outcome is a binary outcome of mortality (dead) or survival (not dead) in the first 48 hours of admission. The planned sample size for achieving a sensitivity of 75% and a specificity of 95% with a CI of ±5% is 200 patients.Ethics and disseminationThis study has been approved by the University of Manitoba Health Research Ethics Board. The findings from our study will be disseminated through peer-reviewed journals and presentations at local rounds, national and international conferences. The public will be informed through forums at the end of the study.Trial registration numberNCT04318665


Sign in / Sign up

Export Citation Format

Share Document