scholarly journals Intravital imaging reveals systemic ezrin inhibition impedes cancer cell migration and lymph node metastasis in breast cancer

2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdi Ghaffari ◽  
Victoria Hoskin ◽  
Gulisa Turashvili ◽  
Sonal Varma ◽  
Jeff Mewburn ◽  
...  
2016 ◽  
Vol 26 (5) ◽  
pp. 810-816 ◽  
Author(s):  
Lingyun Zhang ◽  
Xin Zhan ◽  
Dingding Yan ◽  
Zhihua Wang

ObjectiveThe aims of this study were to discover if increased circulating microRNA-21 (miR-21) expression in serum is associated with lymph node metastasis in patients with cervical cancer and look further into the molecular mechanism of these. Whole-blood samples from 89 patients who have been histopathologically confirmed as having cervical cancer and 20 control subjects were collected, and then the association between lymph node metastasis and the level of circulating miR-21 was compared. Then cervical cancer cell lines HeLa (HPV-18 DNA+, E6/E7RNA+) and HT-3 (HPV DNA−, E6/E7RNA−) were used to confirm the interaction between miR-21 and RASA1. The role of RASA1 in cervical cancer cell migration was also studied in HeLa. Increased circulating miR-21 expression in serum is associated with lymph node metastasis in patients with cervical cancer. MicroRNA-21 reduces RASA1 expression in cervical cancer cell lines and promotes cervical cancer cell migration via RASA1. Furthermore, Ras-induced epithelial-mesenchymal transition contributes to miR-21/RASA1 axis promoting cervical cancer cell migration. Circulating miR-21 in serum could be a promising biomarker in auxiliary diagnosis of lymph node metastasis in cervical cancer, and inhibition of miR-21/RASA1 axis could be a possible strategy to restrain migration of cervical cancer.


2010 ◽  
Vol 207 (11) ◽  
pp. 2421-2437 ◽  
Author(s):  
Yingjie Xu ◽  
Tarek A. Bismar ◽  
Jie Su ◽  
Bin Xu ◽  
Glen Kristiansen ◽  
...  

The actin cross-linking protein filamin A (FLNa) functions as a scaffolding protein and couples cell cytoskeleton to extracellular matrix and integrin receptor signaling. In this study, we report that FLNa suppresses invasion of breast cancer cells and regulates focal adhesion (FA) turnover. Two large progression tissue microarrays from breast cancer patients revealed a significant decrease of FLNa levels in tissues from invasive breast cancer compared with benign disease and in lymph node–positive compared with lymph node–negative breast cancer. In breast cancer cells and orthotopic mouse breast cancer models, down-regulation of FLNa stimulated cancer cell migration, invasion, and metastasis formation. Time-lapse microscopy and biochemical assays after FLNa silencing and rescue with wild-type or mutant protein resistant to calpain cleavage revealed that FLNa regulates FA disassembly at the leading edge of motile cells. Moreover, FLNa down-regulation enhanced calpain activity through the mitogen-activated protein kinase–extracellular signal-regulated kinase cascade and stimulated the cleavage of FA proteins. These results document a regulation of FA dynamics by FLNa in breast cancer cells.


Oncotarget ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 7398-7410 ◽  
Author(s):  
Yin Ji Piao ◽  
Hoe Suk Kim ◽  
Eun Hye Hwang ◽  
Jisu Woo ◽  
Meihua Zhang ◽  
...  

Aging ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 3969-3992 ◽  
Author(s):  
Yuxi Ma ◽  
Zihan Xia ◽  
Chunmei Ye ◽  
Chong Lu ◽  
Sheng Zhou ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 757
Author(s):  
Sanaz Samiei ◽  
Renée W. Y. Granzier ◽  
Abdalla Ibrahim ◽  
Sergey Primakov ◽  
Marc B. I. Lobbes ◽  
...  

Radiomics features may contribute to increased diagnostic performance of MRI in the prediction of axillary lymph node metastasis. The objective of the study was to predict preoperative axillary lymph node metastasis in breast cancer using clinical models and radiomics models based on T2-weighted (T2W) dedicated axillary MRI features with node-by-node analysis. From August 2012 until October 2014, all women who had undergone dedicated axillary 3.0T T2W MRI, followed by axillary surgery, were retrospectively identified, and available clinical data were collected. All axillary lymph nodes were manually delineated on the T2W MR images, and quantitative radiomics features were extracted from the delineated regions. Data were partitioned patient-wise to train 100 models using different splits for the training and validation cohorts to account for multiple lymph nodes per patient and class imbalance. Features were selected in the training cohorts using recursive feature elimination with repeated 5-fold cross-validation, followed by the development of random forest models. The performance of the models was assessed using the area under the curve (AUC). A total of 75 women (median age, 61 years; interquartile range, 51–68 years) with 511 axillary lymph nodes were included. On final pathology, 36 (7%) of the lymph nodes had metastasis. A total of 105 original radiomics features were extracted from the T2W MR images. Each cohort split resulted in a different number of lymph nodes in the training cohorts and a different set of selected features. Performance of the 100 clinical and radiomics models showed a wide range of AUC values between 0.41–0.74 and 0.48–0.89 in the training cohorts, respectively, and between 0.30–0.98 and 0.37–0.99 in the validation cohorts, respectively. With these results, it was not possible to obtain a final prediction model. Clinical characteristics and dedicated axillary MRI-based radiomics with node-by-node analysis did not contribute to the prediction of axillary lymph node metastasis in breast cancer based on data where variations in acquisition and reconstruction parameters were not addressed.


Sign in / Sign up

Export Citation Format

Share Document