scholarly journals Genomic analysis of Burkholderia sp. ISTR5 for biofunneling of lignin-derived compounds

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Raj Morya ◽  
Madan Kumar ◽  
Shashi Shekhar Singh ◽  
Indu Shekhar Thakur

Abstract Background Lignin is the second most abundant natural polymer on earth. Industries using lignocellulosic biomass as feedstock generate a considerable amount of lignin as a byproduct with minimal usage. For a sustainable biorefinery, the lignin must be utilized in improved ways. Lignin is recalcitrant to degradation due to the complex and heterogeneous structure. The depolymerization of lignin and its conversion into specific product stream are the major challenges associated with lignin valorization. The blend of oligomeric, dimeric and monomeric lignin-derived compounds (LDCs) generated during depolymerization can be utilized by microbes for production of bioproducts. Results In the present study, a novel bacterium Burkholderia sp. strain ISTR5 (R5), a proteobacteria belonging to class betaproteobacteria, order Burkholderiales and family Burkholderiaceae, was isolated and characterized for the degradation of LDCs. R5 strain was cultured on 12 LDCs in mineral salt medium (MSM) supplemented with individual compounds such as syringic acid, p-coumaric acid, ferulic acid, vanillin, vanillic acid, guaiacol, 4-hydroxybenzoic acid, gallic acid, benzoic acid, syringaldehyde, veratryl alcohol and catechol. R5 was able to grow and utilize all the selected LDCs. The degradation of selected LDCs was monitored by bacterial growth, total organic carbon (TOC) removal and UV–Vis absorption spectra in scan mode. TOC reduction shown in the sample contains syringic acid 80.7%, ferulic acid 84.1%, p-coumaric acid 85.9% and benzoic acid 83.2%. In UV–Vis absorption spectral scan, most of the lignin-associated peaks were found at or near 280 nm wavelength in the obtained absorption spectra. Enzyme assay for the ligninolytic enzymes was also performed, and it was observed that lignin peroxidase and laccase were predominantly expressed. Furthermore, the GC–MS analysis of LDCs was performed to identify the degradation intermediates from these compounds. The genomic analysis showed the robustness of this strain and identified various candidate genes responsible for the degradation of aromatic or lignin derivatives, detoxification mechanism, oxidative stress response and fatty acid synthesis. The presence of peroxidases (13%), laccases (4%), monooxygenases (23%), dioxygenase (44%), NADPH: quinone oxidoreductases (16%) and many other related enzymes supported the degradation of LDCs. Conclusion Numerous pathway intermediates were observed during experiment. Vanillin was found during growth on syringic acid, ferulic acid and p-coumaric acid. Some other intermediates like catechol, acetovanillone, syringaldehyde and 3,4-dihydroxybenzaldehyde from the recognized bacterial metabolic pathways existed during growth on the LDCs. The ortho- and meta cleavage pathway enzymes, such as the catechol-1,2-dioxygenase, protocatechuate 3,4-dioxygenase, catechol-2,3-dioxygenase and toluene-2,3-dioxygenase, were observed in the genome. In addition to the common aromatic degradation pathways, presence of the epoxyqueuosine reductase, 1,2-epoxyphenylacetyl-CoA isomerase in the genome advocates that this strain may follow the epoxy Coenzyme A thioester pathway for degradation.

2021 ◽  
Vol 105 (7) ◽  
pp. 2967-2977
Author(s):  
Rosa Margesin ◽  
Georg Volgger ◽  
Andreas O. Wagner ◽  
Dechao Zhang ◽  
Caroline Poyntner

Abstract Lignin bio-valorization is an emerging field of applied biotechnology and has not yet been studied at low temperatures. Paraburkholderia aromaticivorans AR20-38 was examined for its potential to degrade six selected lignin monomers (syringic acid, p-coumaric acid, 4-hydroxybenzoic acid, ferulic acid, vanillic acid, benzoic acid) from different upper funneling aromatic pathways. The strain degraded four of these compounds at 10°C, 20°C, and 30°C; syringic acid and vanillic acid were not utilized as sole carbon source. The degradation of 5 mM and 10 mM ferulic acid was accompanied by the stable accumulation of high amounts of the value-added product vanillic acid (85–89% molar yield; 760 and 1540 mg l−1, respectively) over the whole temperature range tested. The presence of essential genes required for reactions in the upper funneling pathways was confirmed in the genome. This is the first report on biodegradation of lignin monomers and the stable vanillic acid production at low and moderate temperatures by P. aromaticivorans. Key points • Paraburkholderia aromaticivorans AR20-38 successfully degrades four lignin monomers. • Successful degradation study at low (10°C) and moderate temperatures (20–30°C). • Biotechnological value: high yield of vanillic acid produced from ferulic acid.


Toxins ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 341
Author(s):  
Paola Giorni ◽  
Silvia Rastelli ◽  
Sofia Fregonara ◽  
Terenzio Bertuzzi

Total phenolic content (TPC) and several phenolic acids present in rice grains were compared with fungal infection and mycotoxin presence throughout the growing season. Samples of 4 rice varieties were collected in 2018 and 2019 at 3 different plant phenological stages. Total fungal and main mycotoxigenic fungi incidence were checked and mycotoxin content was analysed. On the same samples, TPC and the concentration of 8 main phenolic acids (chlorogenic acid, caffeic acid, syringic acid, 4-hydroxybenzoic acid (4-HBA), p-coumaric acid, ferulic acid, protocatecuic acid and gallic acid) were measured. The results showed significant differences between years for both fungal incidence and mycotoxin presence. In 2018 there was a lower fungal presence (42%) than in 2019 (57%) while, regarding mycotoxins, sterigmatocystin (STC) was found in almost all the samples and at all growing stages while deoxynivalenol (DON) was found particularly during ripening. An interesting relationship was found between fungal incidence and TPC, and some phenolic acids seemed to be more involved than others in the plant defense system. Ferulic acid and protocatecuic acid showed a different trend during the growing season depending on fungal incidence and resulted to be positively correlated with p-coumaric acid and 4-HBA that seem involved in mycotoxin containment in field.


Rodriguésia ◽  
2020 ◽  
Vol 71 ◽  
Author(s):  
Camila Jeriane Paganelli ◽  
Diogo Alexandre Siebert ◽  
Luciano Vitali ◽  
Gustavo Amadeu Micke ◽  
Michele Debiasi Alberton

Abstract Myrcia splendens is popularly known as “guamirim-de-folha-miúda”, and its occurrence ranges from Mexico to southern Brazil. The aim of this work was to identify and quantify phenolic compounds in the crude hydroalcoholic (EBH), ethyl acetate (EBAE) and dichloromethane (EBDM) extracts using the HPLC-ESI- MS/MS. In total, 15 compounds, including protocatecuic acid, syringic acid, p-coumaric acid, salicylic acid, isoquercetin, ellagic acid, ferulic acid, umbelliferone, coniferaldehyde, sinapaldehyde, carnosol, gallic acid, syringaldehyde, umbelliferone, coniferaldehyde, myricetin and kaempferol were identified. Ellagic acid was the major compound in all extracts.


2020 ◽  
Vol 15 (11) ◽  
pp. 1934578X2097113
Author(s):  
Chang Ha Park ◽  
Soon-Jae Kwon ◽  
Nam Su Kim ◽  
Seung-A Baek ◽  
Hyeon Ji Yeo ◽  
...  

The chemical composition of the different plant parts of green ( Hibiscus cannabinus L. cv. Jangdae) and purple ( H. cannabinus L. cv. Jeokbong) kenaf cultivars were investigated using high-performance liquid chromatography. Ten carotenoid and phenolic compounds were quantified in the different parts of green and purple kenaf. The accumulation of carotenoids and phenolic compounds in the different parts of both cultivars was slightly different. The total carotenoid content in all parts of purple kenaf was higher than that in green kenaf. In particular, lutein, β-carotene, and 9Z-β-carotene were found in all the plant parts of both purple and green kenaf. Most levels of these 3 carotenoids were higher in all parts of the purple cultivar than those found in the green cultivar. According to the detected phenolic compound content, the leaves of the green cultivar contained a higher level of total phenolics, even though the most levels of the individual phenolic compounds were higher in the purple cultivar due to the level of kaempferitrin, a major compound found in kenaf, being much higher than the levels observed for the other phenolic compounds. However, the flowers and stems of the purple cultivar had a higher level of total phenolics. Among the 10 different phenolic compounds, 7 (4-hydroxybenzoic acid, chlorogenic acid, p-coumaric acid, ferulic acid, benzoic acid, rutin, and kaempferol) were present in all the plant parts of both kenaf cultivars. Purple kenaf leaves contain higher levels of 4-hydroxybenzoic acid, chlorogenic acid, and rutin, whereas the purple cultivar flowers have higher levels of p-coumaric acid, ferulic acid, and benzoic acid. This study provides valuable information on the chemical composition of different plant parts of green and purple kenaf cultivars.


1962 ◽  
Vol 8 (1-6) ◽  
pp. 257-275 ◽  
Author(s):  
Haruo Hosoya ◽  
Jiro Tanaka ◽  
Saburo Nagakura

Author(s):  
Jemma Gibbard ◽  
Eleanor Castracane ◽  
Anna I Krylov ◽  
Robert Continetti

Photoelectron-photofragment coincidence spectroscopy was used to study the dissociation dynamics of the conjugate bases of benzoic acid and p-coumaric acid. Upon photodetachment at 266 nm (4:66 eV) both aromatic carboxylates...


Sign in / Sign up

Export Citation Format

Share Document