scholarly journals ΔNp63 is a pioneer factor that binds inaccessible chromatin and elicits chromatin remodeling

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xinyang Yu ◽  
Prashant K. Singh ◽  
Shamira Tabrejee ◽  
Satrajit Sinha ◽  
Michael J. Buck

Abstract Background ΔNp63 is a master transcriptional regulator playing critical roles in epidermal development and other cellular processes. Recent studies suggest that ΔNp63 functions as a pioneer factor that can target its binding sites within inaccessible chromatin and induce chromatin remodeling. Methods In order to examine if ΔNp63 can bind to inaccessible chromatin and to determine if specific histone modifications are required for binding, we induced ΔNp63 expression in two p63-naïve cell lines. ΔNp63 binding was then examined by ChIP-seq and the chromatin at ΔNp63 targets sites was examined before and after binding. Further analysis with competitive nucleosome binding assays was used to determine how ΔNp63 directly interacts with nucleosomes. Results Our results show that before ΔNp63 binding, targeted sites lack histone modifications, indicating ΔNp63’s capability to bind at unmodified chromatin. Moreover, the majority of the sites that are bound by ectopic ΔNp63 expression exist in an inaccessible state. Once bound, ΔNp63 induces acetylation of the histone and the repositioning of nucleosomes at its binding sites. Further analysis with competitive nucleosome binding assays reveal that ΔNp63 can bind directly to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad. Conclusion Overall, our results demonstrate that ΔNp63 is a pioneer factor that binds nucleosome edges at inaccessible and unmodified chromatin sites and induces histone acetylation and nucleosome repositioning.

2020 ◽  
Author(s):  
Xinyang Yu ◽  
Prashant K. Singh ◽  
Shamira Tabrejee ◽  
Satrajit Sinha ◽  
Michael Buck

Abstract Background: ΔNp63 is a master transcriptional regulator playing critical roles in epidermal development and other cellular processes. Recent studies suggest that ΔNp63 functions as a pioneer factor that can target its binding sites within inaccessible chromatin and induce chromatin remodeling. Methods: In order to examine if ΔNp63 can bind to inaccessible chromatin and to determine if specific histone modifications are required for binding we induced ΔNp63 expression in two p63 naive cell line. ΔNp63 binding was then examined by ChIP-seq and the chromatin at ΔNp63 targets sites was examined before and after binding. Further analysis with competitive nucleosome binding assays was used to determine how ΔNp63 directly interacts with nucleosomes. Results: Our results show that before ΔNp63 binding, targeted sites lack histone modifications, indicating ΔNp63’s capability to bind at unmodified chromatin. Moreover, the majority of the sites that are bound by ectopic ΔNp63 expression exist in an inaccessible state. Once bound ΔNp63 induces acetylation of the histone and the repositioning of nucleosomes at its binding sites. Further analysis with competitive nucleosome binding assays reveal that ΔNp63 can bind directly to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad. Conclusion: Overall, our results demonstrate that ΔNp63 is a pioneer factor that binds nucleosome edges at inaccessible un-modified chromatin sites and induces histone acetylation and nucleosome repositioning.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4759-4759
Author(s):  
Jarmila Podskocova ◽  
Pavel Burda ◽  
Karin Vargova ◽  
Juraj Kokavec ◽  
Nikola Curik ◽  
...  

Abstract Gata1 is transcription factor that regulates erythropoiesis and its direct interaction with chromatin remodeling protein Snf2h may affect chromatin structure (Rodriguez 2005). Snf2h belongs to SWI/SNF2 superfamily of ATPases regulating structure of nuclear chromatin by nucleosome movement and assembly. Snf2h knockout in mice is embryonic lethal and heterozygotes display mild growth retardation (Stopka 2003). We studied nuclear localization of Snf2h and detected its presence in euchromatin and to a lesser extent in heterochromatin. Decreased Snf2h levels in Snf2h heterozygotes and Snf2h-null embryos exhibit significantly decreased heterochromatin size. In addition, histone modifications associated with transcription activation (histone H3K79 dimethylation and H4K16 acetylation) are globally decreased in Snf2h mutants. To test the involvement of Snf2h in hematopoiesis, ectopically expressed Snf2h mutants were tested in Gata1-mediated transcription assay in HeLa cells and demonstrated that Snf2h efficiently repressed Gata1 transactivation. Testing whether the ATPase domain is required for the repression mechanism we found the Snf2h dominant negative mutant (DN) can also repress Gata1-dependent transcription in both HeLa and Snf2h +/− fibroblasts. We next studied the effect of Snf2h DN mutant on histone modifications downstream the Gata1 binding site and found that Snf2h DN further increases H3K79 dimethylation induced by Gata1. In contrast, an occupancy of histone H3 downstream the Gata1 binding site was significantly reduced by Snf2h DN mutant indicated it caused a defect in chromatin remodeling. Collectively, our data demonstrate a cooperative role of Gata1 and Snf2h in erythroid transcription regulation and propose that Snf2h in both ATP-dependent and ATPindependent manner represses transcription by disrupting the regular array of nucleosomes near Gata1 binding sites.


2001 ◽  
Vol 276 (16) ◽  
pp. 12636-12644 ◽  
Author(s):  
Sarojini M. Sengupta ◽  
Michael VanKanegan ◽  
Jim Persinger ◽  
Colin Logie ◽  
Bradley R. Cairns ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Weizhi Ouyang ◽  
Xiwen Zhang ◽  
Yong Peng ◽  
Qing Zhang ◽  
Zhilin Cao ◽  
...  

Characterizing genome-wide histone posttranscriptional modifications and transcriptional factor occupancy is crucial for deciphering their biological functions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a powerful method for genome-wide profiling of histone modifications and transcriptional factor-binding sites. However, the current ChIP-seq experimental procedure in plants requires significant material and several days for completion. CUT&Tag is an alternative method of ChIP-seq for low-sample and single-cell epigenomic profiling using protein A-Tn5 transposase fusion proteins (PAT). In this study, we developed a nucleus CUT&Tag (nCUT&Tag) protocol based on the live-cell CUT&Tag technology. Our results indicate that nCUT&Tag could be used for histone modifications profiling in both monocot rice and dicot rapeseed using crosslinked or fresh tissues. In addition, both active and repressive histone marks such as H3K4me3 and H3K9me2 can be identified using our nCUT&Tag. More importantly, all the steps in nCUT&Tag can be finished in only 1 day, and the assay can be performed with as little as 0.01 g of plant tissue as starting materials. Therefore, our results demonstrate that nCUT&Tag is an efficient alternative strategy for plant epigenomic studies.


2021 ◽  
Author(s):  
Tom van Schaik ◽  
Ning Qing Liu ◽  
Stefano G. Manzo ◽  
Daan Peric-Hupkes ◽  
Elzo de Wit ◽  
...  

Lamina associated domains (LADs) are large genomic regions that are positioned at the nuclear lamina (NL). It has remained largely unclear what drives the positioning and demarcation of LADs. Because the insulator protein CTCF is enriched at LAD borders, it was postulated that CTCF binding could position a subset of LAD boundaries, possibly through its function in stalling cohesin and hence preventing cohesin to invade into the LAD. To test this, we mapped genome - NL interactions in mouse embryonic stem cells after rapid depletion of CTCF and other perturbations of cohesin dynamics. CTCF and cohesin contribute to a sharp transition in NL interactions at LAD borders, whilst LADs are maintained after depletion of these proteins, also at borders marked by CTCF. CTCF and cohesin may thus reinforce LAD borders, but do not position these. CTCF binding sites within LADs are locally detached from the NL and enriched for accessible DNA and active histone modifications. Remarkably, even though NL positioning is strongly correlated with genome inactivity, this DNA remains accessible after the local detachment is lost following CTCF depletion. At a chromosomal scale, cohesin depletion and cohesin stabilization (depletion of the unloading factor WAPL) quantitatively affect NL interactions, indicative of perturbed chromosomal positioning in the nucleus. Finally, while H3K27me3 is locally enriched at CTCF-marked LAD borders, we find no evidence for an interplay between CTCF and H3K27me3 on NL interactions. Combined, these findings illustrate that CTCF and cohesin do not shape LAD patterns. Rather, these proteins mediate fine-tuning of NL interactions.


1999 ◽  
Vol 146 (1) ◽  
pp. 233-242 ◽  
Author(s):  
Hua-Quan Miao ◽  
Shay Soker ◽  
Leonard Feiner ◽  
José Luis Alonso ◽  
Jonathan A. Raper ◽  
...  

Neuropilin-1 (NRP1) is a receptor for two unrelated ligands with disparate activities, vascular endothelial growth factor-165 (VEGF165), an angiogenesis factor, and semaphorin/collapsins, mediators of neuronal guidance. To determine whether semaphorin/collapsins could interact with NRP1 in nonneuronal cells, the effects of recombinant collapsin-1 on endothelial cells (EC) were examined. Collapsin-1 inhibited the motility of porcine aortic EC (PAEC) expressing NRP1 alone; coexpressing KDR and NRP1 (PAEC/KDR/NRP1), but not parental PAEC; or PAEC expressing KDR alone. The motility of PAEC expressing NRP1 was inhibited by 65–75% and this inhibition was abrogated by anti-NRP1 antibody. In contrast, VEGF165 stimulated the motility of PAEC/KDR/NRP1. When VEGF165 and collapsin-1 were added simultaneously to PAEC/KDR/NRP1, dorsal root ganglia (DRG), and COS-7/NRP1 cells, they competed with each other in EC motility, DRG collapse, and NRP1-binding assays, respectively, suggesting that the two ligands have overlapping NRP1 binding sites. Collapsin-1 rapidly disrupted the formation of lamellipodia and induced depolymerization of F-actin in an NRP1-dependent manner. In an in vitro angiogenesis assay, collapsin-1 inhibited the capillary sprouting of EC from rat aortic ring segments. These results suggest that collapsin-1 can inhibit EC motility as well as axon motility, that these inhibitory effects on motility are mediated by NRP1, and that VEGF165 and collapsin-1 compete for NRP1-binding sites.


2021 ◽  
Author(s):  
Ineke Brouwer ◽  
Emma Kerklingh ◽  
Fred van Leeuwen ◽  
Tineke L Lenstra

Transcriptional bursting has been linked to the stochastic positioning of nucleosomes. However, how bursting is regulated by remodeling of promoter nucleosomes is unknown. Here, we use single-molecule live-cell imaging of GAL10 transcription in budding yeast to measure how transcriptional bursting changes upon single and double perturbations of chromatin remodeling factors, the transcription factor Gal4 and preinitiation complex (PIC) components. Using dynamic epistasis analysis, we reveal how remodeling of different nucleosomes regulates individual transcriptional bursting parameters. At the nucleosome covering the Gal4 binding sites, RSC acts synergistically with Gal4 binding to facilitate each burst. Conversely, nucleosome remodeling at the TATA box controls only the first burst upon galactose induction. In the absence of remodelers, nucleosomes at canonical TATA boxes are displaced by TBP binding to allow for transcription activation. Overall, our results reveal how promoter nucleosome remodeling, together with transcription factor and PIC binding regulates the kinetics of transcriptional bursting.


Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2511-2520 ◽  
Author(s):  
S. Fujiwara ◽  
J.C. Corbo ◽  
M. Levine

Previous studies have identified a minimal 434 bp enhancer from the promoter region of the Ciona Brachyury gene (Ci-Bra), which is sufficient to direct a notochord-specific pattern of gene expression. Here we present evidence that a Ciona homolog of snail (Ci-sna) encodes a repressor of the Ci-Bra enhancer in the tail muscles. DNA-binding assays identified four Ci-Sna-binding sites in the Ci-Bra enhancer, and mutations in these sites cause otherwise normal Ci-Bra/lacZ transgenes to be misexpressed in ectopic tissues, particularly the tail muscles. Selective misexpression of Ci-sna using a heterologous promoter results in the repression of Ci-Bra/lacZ transgenes in the notochord. Moreover, the conversion of the Ci-Sna repressor into an activator results in the ectopic induction of Ci-Bra/lacZ transgenes in the muscles, and also causes an intermixing of notochord and muscle cells during tail morphogenesis. These results suggest that Ci-Sna functions as a boundary repressor, which subdivides the mesoderm into separate notochord and tail muscle lineages.


2001 ◽  
Vol 114 (14) ◽  
pp. 2561-2568
Author(s):  
Gernot Längst ◽  
Peter B. Becker

ATP-dependent chromatin-remodeling machines of the SWI/SNF family are involved in many cellular processes in eukaryotic nuclei, such as transcription, replication, repair and recombination. Remodeling factors driven by the ATPase ISWI make up a subgroup of this family that exhibits defined mechanistic and functional characteristics. ISWI-induced nucleosome mobility endows nucleosomal arrays with dynamic properties and recent results suggest that ISWI-type remodelers have diverse functions that range from transcriptional regulation to chromatin assembly and maintenance of chromosome structure.


Sign in / Sign up

Export Citation Format

Share Document