scholarly journals Gut microbiota mediated the therapeutic efficacies and the side effects of prednisone in the treatment of MRL/lpr mice

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Mingzhu Wang ◽  
Zhengyang Zhu ◽  
Xiaoying Lin ◽  
Haichang Li ◽  
Chengping Wen ◽  
...  

Abstract Background Growing evidences indicate that the alterations in gut microbiota are associated with the efficacy of glucocorticoids (GCs) in the treatment of systemic lupus erythematosus (SLE). However, there is no evidence to prove whether gut microbiota directly mediates the effects of GCs. Methods Using the MRL/lpr mice, this study firstly addressed the effects of three doses of prednisone on gut microbiota. Then, this study used fecal microbiota transplantation (FMT) to transfer the gut microbiota of prednisone-treated MRL/lpr mice into the blank MRL/lpr mice to reveal whether the gut microbiota regulated by prednisone had similar therapeutic efficiency and side effects as prednisone. Results The effects of prednisone on gut microbiota were dose-dependent in the treatment of MRL/lpr mice. After transplantation into MRL/lpr mice, prednisone-regulated gut microbiota could alleviate lupus, which might be due to decreasing Ruminococcus and Alistipes and retaining the abundance of Lactobacillus. However, prednisone-regulated gut microbiota did not exhibit side effects as prednisone. The reason might be that the pathogens upregulated by prednisone could not survive in the MRL/lpr mice as exogenous microbiota, such as Parasutterella, Parabacteroides, and Escherichia-Shigella. Conclusions These data demonstrated that the transplantation of gut microbiota may be an effective method to obtain the therapeutic effects of GCs and avoid the side effects of GCs.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Marian A. Gerges ◽  
Noura E. Esmaeel ◽  
Wafaa K. Makram ◽  
Doaa M. Sharaf ◽  
Manar G. Gebriel

Background. Dysbiosis of gut microbiota could promote autoimmune disorders including systemic lupus erythematosus (SLE). Clarifying this point would be of great importance in understanding the pathogenesis and hence the development of new strategies for SLE treatment. Aim. This study aimed to determine the fecal microbiota profile in newly diagnosed SLE patients compared to healthy subjects and to investigate the correlation of this profile with disease activity. Methods. Newly diagnosed SLE patients who fulfilled at least four of the American College of Rheumatology (ACR) criteria were enrolled during the study period. Patients with lupus were matched to healthy subjects. SLE activity was evaluated using the Systemic Lupus Disease Activity Index (SLEDAI-2K). Fresh fecal samples were collected from each subject. Genomic DNA was extracted from fecal samples. Quantitative real-time PCR was applied for quantitation of Firmicutes phylum, Bacteroidetes phylum, and Lactobacillus genus in comparison to the total fecal microbiota. Results of patients’ samples were compared to those of healthy subjects and were correlated to patients’ SLEDAI-2K score. Results. Twenty SLE patients’ samples were compared with 20 control samples. There was a significant alteration in SLE patients’ gut microbiota. A significantly lower ( p ≤ 0.001 ) Firmicutes/Bacteroidetes (F/B) ratio in SLE patients (mean ratio: 0.66%) compared to healthy subjects (mean ratio: 1.79%) was found. Lactobacillus showed a significant decrease in SLE patients ( p = 0.006 ) in comparison to healthy controls. An inverse significant correlation between SLEDAI-2K scores for disease activity and F/B ratio (r = −0.451; p = 0.04 ) was found. However, an inverse nonsignificant correlation between SLEDAI-2K scores for disease activity and Lactobacillus (r = −0.155; p = 0.51 ) was detected. Conclusion. Compared to healthy controls, recently diagnosed SLE Egyptian patients have an altered fecal microbiota profile with significant lowering of both F/B ratio and Lactobacillus abundance, which is weakly correlated with disease activity.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Liuye Huang ◽  
Yuan Yang ◽  
Yu Kuang ◽  
Dapeng Wei ◽  
Wanyi Li ◽  
...  

Objective. Systemic lupus erythematosus (SLE) is an autoimmune disease identified by a plethora of production of autoantibodies. Autoreactive T cells may play an important role in the process. Attenuated T cell vaccination (TCV) has proven to benefit some autoimmune diseases by deleting or suppressing pathogenic T cells. However, clinical evidence for TCV in SLE is still limited. Therefore, this self-controlled study concentrates on the clinical effects of TCV on SLE patients. Methods. 16 patients were enrolled in the study; they accepted TCV regularly. SLEDAI, clinical symptoms, blood parameters including complements 3 and 4 levels, ANA, and anti-ds-DNA antibodies were tested. In addition, the side effects and drug usage were observed during the patients’ treatment and follow-up. Results. Remissions in clinical symptoms such as facial rash, vasculitis, and proteinuria were noted in most patients. There are also evident reductions in SLEDAI, anti-ds-DNA antibodies, and GC dose and increases in C3 and C4 levels, with no pathogenic side effects during treatment and follow-up. Conclusions. T cell vaccination is helpful in alleviating and regulating systemic lupus erythematosus manifestation.


2021 ◽  
Author(s):  
Yiyangzi Ma ◽  
Ruru Guo ◽  
Yiduo Sun ◽  
Xin Li ◽  
Lun He ◽  
...  

Background: The etiology of systemic lupus erythematosus (SLE) is multifactorial. Recently, growing evidence suggests that the microbiota plays a role in SLE, yet whether gut microbiota participates in the development of SLE remains largely unknown. To investigate this issue, we carried out 16s rDNA sequencing analyses in a cohort of 18 female un-treated active SLE patients and 7 female healthy controls, and performed fecal microbiota transplantation from patients and healthy controls to germ-free mice. Results: Compared to the healthy controls, we found no significant different microbial diversity but some significantly different species in SLE patients including Turicibacter genus and other 5 species. Fecal transfer from SLE patients to germ free (GF) C57BL/6 mice caused GF mice to develop a series of lupus-like phenotyptic features, which including an increased serum autoimmune antibodies, and imbalanced cytokines, altered distribution of immune cells in mucosal and peripheral immune response, and upregulated expression of genes related to SLE in recipient mice that received SLE fecal microbiota transplantation (FMT). Moreover, the metabolism of histidine was significantly altered in GF mice treated with SLE patient feces, as compared to those which received healthy fecal transplants. Conclusions: Overall, our results describe a causal role of aberrant gut microbiota in contributing to the pathogenesis of SLE. The interplay of gut microbial and histidine metabolism may be one of the mechanisms intertwined with autoimmune activation in SLE.


2019 ◽  
Vol 20 (18) ◽  
pp. 4584 ◽  
Author(s):  
Romain Villéger ◽  
Amélie Lopès ◽  
Guillaume Carrier ◽  
Julie Veziant ◽  
Elisabeth Billard ◽  
...  

Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 970 ◽  
Author(s):  
Savino Sciascia ◽  
Massimo Radin ◽  
Dario Roccatello ◽  
Giovanni Sanna ◽  
Maria Laura Bertolaccini

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease presenting highly heterogeneous clinical manifestations and multi-systemic involvement. Patients are susceptible to relapse­ and remission, thus making management challenging. Moreover, a considerable number of side effects may occur with conventional therapies; therefore, there is clearly a need for new therapeutic strategies. Since the pathogenesis of SLE is highly complex, it is far from being fully understood. However, greater understanding of the pathways and of the cellular and molecular mediators involved in SLE is being achieved. Emerging evidence has allowed the development of new biological therapeutic options targeting crucial molecular mediators involved in the pathogenesis of SLE. This literature review analyzes the availability of biological and target-directed treatments, phase II and III trials, and new therapies that are being developed for the treatment of SLE.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jiali Zhu ◽  
Kui Cui ◽  
Jianqun Kou ◽  
Shuzhi Wang ◽  
Yinli Xu ◽  
...  

Systemic lupus erythematosus (SLE) is an autoimmune disease and effective therapy for this pathology is currently unavailable. We previously reported that oral administration ofNaja naja atravenom (NNAV) had anti-inflammatory and immune regulatory actions. We speculated that NNAV may have therapeutic effects in MRL/lpr SLE mice. Twelve-week-old MRL/lpr mice received oral administration of NNAV (20, 40, and 80 μg/kg) orTripterygium wilfordii polyglycosidium(10 mg/kg) daily for 16 weeks. The effects of NNAV on SLE manifestations, including skin erythema, proteinuria, and anxiety-like behaviors, were assessed with visual inspection and Multistix 8 SG strips and open field test, respectively. The pathology of spleen and kidney was examined with H&E staining. The changes in autoimmune antibodies and cytokines were determined with ELISA kits. The results showed that NNAV protected against the manifestation of SLE, including skin erythema and proteinuria. In addition, although no apparent histological change was found in liver and heart in MRL/lpr SLE mice, NNAV reduced the levels of glutamate pyruvate transaminase and creatine kinase. Furthermore, NNAV increased serum C3 and reduced concentrations of circulating globulin, anti-dsDNA antibody, and inflammatory cytokines IL-6 and TNF-α. NNAV also reduced lymphadenopathy and renal injury. These results suggest that NNAV may have therapeutic values in the treatment of SLE by inhibiting autoimmune responses.


2021 ◽  
Vol 18 (7) ◽  
pp. 1391-1396
Author(s):  
Yajuan Li ◽  
Lixin Zhao ◽  
Xuehui Yang ◽  
Jing Chen ◽  
Wenjing Xu ◽  
...  

Purpose: To study the influence of artemisinin derivative, SM934 on activation, proliferation, differentiation and antibody-secreting capacity of B cells of systemic lupus erythematosus (SLE) mice, and the underlying mechanism. Methods: Female MRL/lpr mice (n = 60) were randomly assigned to four groups of 15 mice each: SLE, 2.5 mg/kg SM934; 5 mg/kg SM934, and 10 mg/kg SM934 groups. Serum levels of interleukins 6, 10, 17 and 21 (IL-6, IL-17, IL-10 and IL-21) were determined. The secretions of immunoglobulins G and M (IgG and IgM) by B cells were determined. The population of B lymphocyte subtypes was determined flow cytometrically. The expressions of Blimp-1 and Bcl-6, Toll-like receptors 7 and 9 (TLR7 and TLR9) mRNAs were determined. Results: SLE-induced upregulation of serum IL-10, IL-6, IL-17 and IL-21 was significantly and dosedependently reduced following a 2-month treatment with SM934 (p < 0.01). Treatment with SM934 significantly and dose-dependently accentuated B cell germinal center B cell populations, but significantly and dose-dependently decreased the populations of plasma and activated B cells (p < 0.01). The splenic levels of IgG and IgM were decreased in a dose-dependent fashion after 8 weeks of treatment (p < 0.01). Artemisinin derivative SM934 decreased the expression of Blimp-1, and upregulated the expression of Bcl-6, both in a dose-dependent manner (p < 0.01). Moreover, SM934 decreased the mRNA expressions of TLR7 and TLR9 in a dose-based manner (p < 0.01). Conclusion: Artemisinin derivative SM934 mitigates LSE syndromes by suppressing the TLR-induced B-cell stimulation and plasma cell generation


Sign in / Sign up

Export Citation Format

Share Document