scholarly journals On the modeling of the interaction between tumor growth and the immune system using some new fractional and fractional-fractal operators

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Behzad Ghanbari

Abstract Humans are always exposed to the threat of infectious diseases. It has been proven that there is a direct link between the strength or weakness of the immune system and the spread of infectious diseases such as tuberculosis, hepatitis, AIDS, and Covid-19 as soon as the immune system has no the power to fight infections and infectious diseases. Moreover, it has been proven that mathematical modeling is a great tool to accurately describe complex biological phenomena. In the recent literature, we can easily find that these effective tools provide important contributions to our understanding and analysis of such problems such as tumor growth. This is indeed one of the main reasons for the need to study computational models of how the immune system interacts with other factors involved. To this end, in this paper, we present some new approximate solutions to a computational formulation that models the interaction between tumor growth and the immune system with several fractional and fractal operators. The operators used in this model are the Liouville–Caputo, Caputo–Fabrizio, and Atangana–Baleanu–Caputo in both fractional and fractal-fractional senses. The existence and uniqueness of the solution in each of these cases is also verified. To complete our analysis, we include numerous numerical simulations to show the behavior of tumors. These diagrams help us explain mathematical results and better describe related biological concepts. In many cases the approximate results obtained have a chaotic structure, which justifies the complexity of unpredictable and uncontrollable behavior of cancerous tumors. As a result, the newly implemented operators certainly open new research windows in further computational models arising in the modeling of different diseases. It is confirmed that similar problems in the field can be also be modeled by the approaches employed in this paper.

SIMULATION ◽  
2017 ◽  
Vol 93 (8) ◽  
pp. 641-657 ◽  
Author(s):  
Fateme Pourhasanzade ◽  
S.H Sabzpoushan ◽  
Ali Mohammad Alizadeh ◽  
Ebrahim Esmati

Mathematical and computational models are of great help to study and predict phenomena associated with cancer growth and development. These models may lead to introduce new therapies or improve current treatments by discovering facts that may not be easily discovered in clinical experiments. Here, a new two-dimensional (2D) stochastic agent-based model is presented for the spatiotemporal study of avascular tumor growth based on the effect of the immune system. The simple decision-making rules of updating the states of each agent depend not only on its intrinsic properties but also on its environment. Tumor cells can interact with both normal and immune cells in their Moore neighborhood. The effect of hypoxia has been checked off by considering non-mutant proliferative tumor cells beside mutant ones. The recruitment of immune cells after facing a mass of tumor is also considered. Results of the simulations are presented before and after the appearance of immune cells in the studied tissue. The growth fraction and necrotic fraction are used as output parameters along with a 2D graphical growth presentation. Finally, the effect of input parameters on the output parameters generated by the model is discussed. The model is then validated by an in vivo study published in medical articles. The results show a multi-spherical tumor growth before the immune system strongly involved in competition with tumor cells. Besides, considering the immune system in the model shows more compatibility with biological facts. The effect of the microenvironment on the proliferation of cancer and immune cells is also studied.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
J. Jesús Naveja ◽  
Flavio F. Contreras-Torres ◽  
Andrés Rodríguez-Galván ◽  
Erick Martínez-Lorán

Numerous mathematical and computational models have arisen to study and predict the effects of diverse therapies against cancer (e.g., chemotherapy, immunotherapy, and even therapies under research with oncolytic viruses) but, unfortunately, few efforts have been directed towards development of tumor resection models, the first therapy against cancer. The model hereby presented was stated upon fundamental assumptions to produce a predictor of the clinical outcomes of patients undergoing a tumor resection. It uses ordinary differential equations validated for predicting the immune system response and the tumor growth in oncologic patients. This model could be further extended to a personalized prognosis predictor and tools for improving therapeutic strategies.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 753-757
Author(s):  
Anagha Gulhane ◽  
Shamli Hiware

It is the most unreliable truth that anybody can get infected by the COVID-19, and nobody can escape from the danger of getting tainted by the virus. Yet, the line of hope is that anyone and everyone can boost their resistance, thus avoid the risk of getting affected by the illness. The immunity of humans pulls down as they grow older. If their immune system is robust, them falling sick is feeble. If their resistance is weak, them getting ill is sound. Several factors affect the immune system and its ability, including its nourishment. A two-way connection between nutrition, infection and immunity presents. Changes in one part will affect the others part in our body that's the nature's rule. Well defined immune system quality which is present between each life phase may influence the type, generality and the degree of infections. At the same time, low nutrition to the body will decrease the immune function and expose the body to the danger of getting infected by infectious diseases. Different quantity of micronutrients is required for increasing the immunity power of our body. Generally the vitamins A,C,D,E,B2,B6,B12, iron, zinc and selenium.The deficiencies of micronutrients are acknowledged as a global health issue, and also low nutrition makes it prone to establishes the infections in the body.


2005 ◽  
Vol 2005 (12) ◽  
pp. 1843-1851 ◽  
Author(s):  
Zeqing Liu ◽  
Juhe Sun ◽  
Soo Hak Shim ◽  
Shin Min Kang

We introduce and study a new class of generalized nonlinear variational-like inequalities. Under suitable conditions, we prove the existence of solutions for the class of generalized nonlinear variational-like inequalities. A new iterative algorithm for finding the approximate solutions of the generalized nonlinear variational-like inequality is given and the convergence of the algorithm is also proved. The results presented in this paper improve and generalize some results in recent literature.


2006 ◽  
Vol 23 (5) ◽  
pp. 365-376 ◽  
Author(s):  
Henkjan Honing

While the most common way of evaluating a computational model is to see whether it shows a good fit with the empirical data, recent literature on theory testing and model selection criticizes the assumption that this is actually strong evidence for the validity of a model. This article presents a case study from music cognition (modeling the ritardandi in music performance) and compares two families of computational models (kinematic and perceptual) using three different model selection criteria: goodness-of-fit, model simplicity, and the degree of surprise in the predictions. In the light of what counts as strong evidence for a model’s validity—namely that it makes limited range, nonsmooth, and relatively surprising predictions—the perception-based model is preferred over the kinematic model.


ILAR Journal ◽  
2018 ◽  
Vol 59 (3) ◽  
pp. 209-210
Author(s):  
Gregers Jungersen ◽  
Jorge Piedrahita

Abstract Valid interpretation of preclinical animal models in immunology-related clinical challenges is important to solve outstanding clinical needs. Given the overall complexity of the immune system and both species- and tissue-specific immune peculiarities, the selection and design of appropriate immune-relevant animal models is, however, not following a straightforward path. The topics in this issue of the ILAR Journal provide assessments of immune-relevant animal models used in oncology, hematopoietic-, CAR-T cell- and xenotransplantation, adjuvants and infectious diseases, and immune privileged inflammation that are providing key insights into unmet human clinical needs.


Author(s):  
Meghit Boumediene Khaled ◽  
Nada Benajiba

The immune system is involved in the protection of host against environmental agents such as pathogenic micro-organisms (bacteria, fungi, and viruses) and chemicals, thereby preserving the integrity of the body. To preserve organism defense mechanisms, adequate nutritional status should be maintained with appropriate intakes of calories, vitamins, minerals and water that should be continuously provided by a healthy diet. The emergence of new infectious diseases with new pathogenic properties constitutes a serious health issue worldwide. Severe acute respiratory syndrome (SARS) represents one of the most recent emerging infectious diseases, caused by a novel coronavirus member called (SARS-CoV-2), identified in Wuhan, Hubei, China in December 2019, and recognized as pandemic by the World Health Organization (WHO). The nutritional status of each COVID-19-infected patient should be assessed prior undertaking treatments. Nutritional support should be the basis of management of any infected individual. However, prevention measures remain the first priority and strategy to develop throughout proper hygiene, healthy diet and staying home. Keywords: Nutrition, Immune system, Viral diseases, SARS-CoV-2.


2021 ◽  
Vol 22 (23) ◽  
pp. 13009
Author(s):  
Xi-Dian Tang ◽  
Tian-Tian Ji ◽  
Jia-Rui Dong ◽  
Hao Feng ◽  
Feng-Qiang Chen ◽  
...  

Cytokine storm is a phenomenon characterized by strong elevated circulating cytokines that most often occur after an overreactive immune system is activated by an acute systemic infection. A variety of cells participate in cytokine storm induction and progression, with profiles of cytokines released during cytokine storm varying from disease to disease. This review focuses on pathophysiological mechanisms underlying cytokine storm induction and progression induced by pathogenic invasive infectious diseases. Strategies for targeted treatment of various types of infection-induced cytokine storms are described from both host and pathogen perspectives. In summary, current studies indicate that cytokine storm-targeted therapies can effectively alleviate tissue damage while promoting the clearance of invading pathogens. Based on this premise, “multi-omics” immune system profiling should facilitate the development of more effective therapeutic strategies to alleviate cytokine storms caused by various diseases.


Sign in / Sign up

Export Citation Format

Share Document