scholarly journals Modeling bacterial resistance to antibiotics: bacterial conjugation and drug effects

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Pirommas Techitnutsarut ◽  
Farida Chamchod

AbstractAntibiotic resistance is a major burden in many hospital settings as it drastically reduces the successful probability of treating bacterial infections. Generally, resistance is associated with bacterial fitness reduction and selection pressure from antibiotic usage. Here, we investigate the effects of bacterial conjugation, plasmid loss, and drug responses on the population dynamics of sensitive and resistant bacteria by using a mathematical model. Two types of drugs are considered here: antibiotic M that kills only sensitive bacteria and antibiotic N that kills both bacteria. Our results highlight that larger dose and longer dosing interval of antibiotic M may result in the higher prevalence of resistant bacteria while they do the opposite for antibiotic N. When delays in administering initial and second doses are incorporated, the results demonstrate that the delays may lead to the higher prevalence of resistant bacteria when antibiotic M or N is administered with the longer time of bacteria remaining at the lower prevalence of the latter. Our results highlight that switching antibiotic agents during a treatment course and different bacterial strain characteristics result in a significant impact on the prevalence of resistant bacteria.

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 871
Author(s):  
Mohammed F. Aldawsari ◽  
El-Sayed Khafagy ◽  
Ahmed Al Saqr ◽  
Ahmed Alalaiwe ◽  
Hisham A. Abbas ◽  
...  

The bacterial resistance development due to the incessant administration of antibiotics has led to difficulty in their treatment. Natural adjuvant compounds can be co-administered to hinder the pathogenesis of resistant bacteria. Sotolon is the prevailing aromatic compound that gives fenugreek its typical smell. In the current work, the anti-virulence activities of sotolon on Pseudomonas aeruginosa have been evaluated. P. aeruginosa has been treated with sotolon at sub-minimum inhibitory concentration (MIC), and production of biofilm and other virulence factors were assessed. Moreover, the anti-quorum sensing (QS) activity of sotolon was in-silico evaluated by evaluating the affinity of sotolon to bind to QS receptors, and the expression of QS genes was measured in the presence of sotolon sub-MIC. Furthermore, the sotolon in-vivo capability to protect mice against P. aeruginosa was assessed. Significantly, sotolon decreased the production of bacterial biofilm and virulence factors, the expression of QS genes, and protected mice from P. aeruginosa. Conclusively, the plant natural substance sotolon attenuated the pathogenicity of P. aeruginosa, locating it as a plausible potential therapeutic agent for the treatment of its infections. Sotolon can be used in the treatment of bacterial infections as an alternative or adjuvant to antibiotics to combat their high resistance to antibiotics.


BMC Materials ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Yuxin Qian ◽  
Yue Shen ◽  
Shuai Deng ◽  
Tingyan Liu ◽  
Fan Qi ◽  
...  

Abstract Background Bacterial infections and endotoxin contaminations are serious problems in the production/manufacture of food, water, drinks, and injections. The development of effective materials to kill bacteria and adsorb endotoxins, particularly those caused by gram-negative bacteria, represents a major step toward improved safety. As synthetic mimic of host defense peptides, β-peptide polymers are not susceptible to bacterial resistance and exhibit potent bacteria-killing abilities upon antibiotic-resistant bacteria. This study investigated the potential of synthetic β-peptide polymer-modified polyacrylate (PA) beads to kill bacteria and remove endotoxin, i.e. lipopolysaccharide (LPS), produced by these bacteria. Results Synthetic β-peptide polymer-modified PA beads displayed strong antimicrobial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus, as well as excellent biocompatibility. In addition, these β-peptide polymer-modified beads removed around 90% of the endotoxins, even at 200 EU/mL of LPS, a very high concentration of LPS. Conclusions β-peptide polymer-modified PA beads are efficient in bacterial killing and endotoxin adsorption. Hence, these modified beads demonstrate the potential application in the production/manufacture of food, water, drinks, and injections.


2020 ◽  
Vol 117 (37) ◽  
pp. 22967-22973
Author(s):  
Amanda C. Zangirolami ◽  
Lucas D. Dias ◽  
Kate C. Blanco ◽  
Carolina S. Vinagreiro ◽  
Natalia M. Inada ◽  
...  

Hospital-acquired infections are a global health problem that threatens patients’ treatment in intensive care units, causing thousands of deaths and a considerable increase in hospitalization costs. The endotracheal tube (ETT) is a medical device placed in the patient’s trachea to assist breathing and delivering oxygen into the lungs. However, bacterial biofilms forming at the surface of the ETT and the development of multidrug-resistant bacteria are considered the primary causes of ventilator-associated pneumonia (VAP), a severe hospital-acquired infection for significant mortality. Under these circumstances, there has been a need to administrate antibiotics together. Although necessary, it has led to a rapid increase in bacterial resistance to antibiotics. Therefore, it becomes necessary to develop alternatives to prevent and combat these bacterial infections. One possibility is to turn the ETT itself into a bactericide. Some examples reported in the literature present drawbacks. To overcome those issues, we have designed a photosensitizer-containing ETT to be used in photodynamic inactivation (PDI) to avoid bacteria biofilm formation and prevent VAP occurrence during tracheal intubation. This work describes ETT’s functionalization with curcumin photosensitizer, as well as its evaluation in PDI against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A significant photoinactivation (up to 95%) against Gram-negative and Gram-positive bacteria was observed when curcumin-functionalized endotracheal (ETT-curc) was used. These remarkable results demonstrate this strategy’s potential to combat hospital-acquired infections and contribute to fighting antimicrobial resistance.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 259 ◽  
Author(s):  
Craig Miller ◽  
Jordon Gilmore

Since the discovery and subsequent use of penicillin, antibiotics have been used to treat most bacterial infections in the U.S. Over time, the repeated prescription of many antibiotics has given rise to many antibiotic-resistant microbes. A bacterial strain becomes resistant by horizontal gene transfer, where surviving microbes acquire genetic material or DNA fragments from adjacent bacteria that encode for resistance. In order to avoid significant bacterial resistance, novel and target therapeutics are needed. Further advancement of diagnostic technologies could be used to develop novel treatment strategies. The use of biosensors to detect quorum-sensing signaling molecules has the potential to provide timely diagnostic information toward mitigating the multidrug-resistant bacteria epidemic. Resistance and pathogenesis are controlled by quorum-sensing (QS) circuits. QS systems secrete or passively release signaling molecules when the bacterial concentration reaches a certain threshold. Signaling molecules give an early indication of virulence. Detection of these compounds in vitro or in vivo can be used to identify the onset of infection. Whole-cell and cell-free biosensors have been developed to detect quorum-sensing signaling molecules. This review will give an overview of quorum networks in the most common pathogens found in chronic and acute infections. Additionally, the current state of research surrounding the detection of quorum-sensing molecules will be reviewed. Followed by a discussion of future works toward the advancement of technologies to quantify quorum signaling molecules in chronic and acute infections.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 151
Author(s):  
Tatjana Kirtikliene ◽  
Aistė Mierauskaitė ◽  
Ilona Razmienė ◽  
Nomeda Kuisiene

Bacterial resistance to antimicrobial agents plays an important role in the treatment of bacterial infections in healthcare institutions. The spread of multidrug-resistant bacteria can occur during inter- and intra-hospital transmissions among patients and hospital personnel. For this reason, more studies must be conducted to understand how resistance occurs in bacteria and how it moves between hospitals by comparing data from different years and looking out for any patterns that might emerge. Multidrug-resistant (MDR) Acinetobacter spp. was studied at 14 healthcare institutions in Lithuania during 2014, 2016, and 2018 using samples from human bloodstream infections. In total, 194 isolates were collected and identified using MALDI-TOF and VITEK2 analyzers as Acinetobacter baumannii group bacteria. After that, the isolates were analyzed for the presence of different resistance genes (20 genes were analyzed) and characterized by using the Rep-PCR and MLVA (multiple-locus variable-number tandem repeat analysis) genotyping methods. The results of the study showed the relatedness of the different Acinetobacter spp. isolates and a possible circulation of resistance genes or profiles during the different years of the study. This study provides essential information, such as variability and diversity of resistance genes, genetic profiling, and clustering of isolates, to better understand the antimicrobial resistance patterns of Acinetobacter spp. These results can be used to strengthen the control of multidrug-resistant infections in healthcare institutions and to prevent potential outbreaks of this pathogen in the future.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 60
Author(s):  
Rui Zhang ◽  
Xiaobo Fan ◽  
Xinglu Jiang ◽  
Mingyuan Zou ◽  
Han Xiao ◽  
...  

The emergence of drug-resistant bacteria emphasizes the urgent need for novel antibiotics. The antimicrobial peptide TS shows extensive antibacterial activity in vitro and in vivo, especially in gram-negative bacteria; however, its antibacterial mechanism is unclear. Here, we find that TS without hemolytic activity disrupts the integrity of the outer bacterial cell membrane by displacing divalent cations and competitively binding lipopolysaccharides. In addition, the antimicrobial peptide TS can inhibit and kill E. coli by disintegrating the bacteria from within by interacting with bacterial DNA. Thus, antimicrobial peptide TS’s multiple antibacterial mechanisms may not easily induce bacterial resistance, suggesting use as an antibacterial drug to be for combating bacterial infections in the future.


Author(s):  
Samreen Tanveer ◽  
Athar Masood ◽  
Kanwal Ashiq ◽  
Mehwish Qayyum ◽  
Maydda Asif Bajwa ◽  
...  

Background: Tetracyclines belong to a class of broad spectrum antibiotics. Around the globe, they are prescribed to treat various gram negative and gram positive bacterial infections. Once in the cell, they reversibly bind to the receptors which are located on 30S subunit of bacterial ribosome. They act by averting the protein synthesis, in turn, halting the bacterial growth. Aim and Objectives: The aim of current review is to study tetracyclines, identifying potential activity against infections and highlighting the microbial resistance associated with various analogues. Material and Method: The data for this review is collected from various databases including Scopus, PubMed, Springer Link and Google Scholar. To ensure the credibility only indexed articles were used in current study. Result: The outcome of the study has suggested that tetracyclines and number of its analogues show selective bioactivity and strength to the biological targets. Through modification at certain positions, activity of drug is changed substantially. This not only affects therapeutic activity and safety profile but also has influence the bacterial resistance. Conclusion: As antibiotic resistance amongst bacteria is emerging tremendously, demanding more research. It is still needed to synthesize the novel analogues that would be helpful to cure infections caused by the resistant bacteria.  Further these analogues can be tagged with radioisotopes that would be helpful for diagnosis and treatment of infectious diseases.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1469
Author(s):  
Haseena ◽  
Adnan Khan ◽  
Iqra Ghaffar ◽  
Roua S. Baty ◽  
Mohamed M. Abdel-Daim ◽  
...  

The rise in bacterial resistance to currently used antibiotics is the main focus of medical researchers. Bacterial multidrug resistance (MDR) is a major threat to humans, as it is linked to greater rates of chronic disease and mortality. Hence, there is an urgent need for developing effective strategies to overcome the bacterial MDR. Metal–organic frameworks (MOFs) are a new class of porous crystalline materials made up of metal ions and organic ligands that can vary their pore size and structure to better encapsulate drug candidates. This study reports the synthesis of ribose-coated Cu-MOFs for enhanced bactericidal activity of chloramphenicol (CHL) against Escherichia coli (resistant and sensitive) and MDR Pseudomonas aeruginosa. The synthesized Cu-MOFs were characterized with DLS, FT-IR, powder X-ray diffraction, scanning electron microscope, and atomic force microscope. They were further investigated for their efficacy against selected bacterial strains. The synthesized ribose-coated Cu-MOFs were observed as spherical shape structure with the particle size of 562.84 ± 13.42 nm. CHL caused the increased inhibition of E. coli and MDR P. aeruginosa with significantly reduced MIC and MBIC values after being encapsulated in ribose-coated Cu-MOFs. The morphological analysis of the bacterial strains treated with ribose-coated CHL-Cu-MOFs showed the complete morphological distortion of both E. coli and MDR P. aeruginosa. Based on the results of the study, it can be suggested that ribose-coated Cu-MOFs may be an effective alternate candidate to overcome the MDR and provide new perspective for the treatment of MDR bacterial infections.


Author(s):  
Tiansheng Liu ◽  
Guowei Zhong ◽  
Dongying Tang ◽  
Xu Liu ◽  
Xianghua Zhong ◽  
...  

Bacterial infections, especially infections caused by multi-drug resistant bacteria, pose a serious threat to human health and bring huge challenges to clinical treatment. The excessive use of antibiotics can easily lead to the emergence of bacterial resistance, which severely limits clinical treatment options. There is an urgent need to develop high-efficiency antibacterial materials and treatment strategies to inhibit infections caused by multidrug-resistant bacteria. In this work, a nanocomposite named Ofloxacin@HMPB@HA(OHH NPs) combined with the laser irradiation was used to reduce the development of drug resistance and accelerate wound healing in a model infected by Klebsiella pneumoniae(K.Pneumoniae). In vitro results showed that compared with OHH NPs or NIR laser irradiation alone, this combination strategy can exert a synergistic effect on anti-K.Pneumoniae by destroying cell integrity with generating ROS and reducing ATP, and also inhibit the development of bacterial resistance. Moreover, in vivo experiments have shown that the system effectively promotes wound healing through killing K.Pneumoniae and promoting the formation of new tissues. In summary, these results indicate that OHH NPs show great potential in the clinical application of bacterial infections.


2021 ◽  
Author(s):  
Xiaoqing Wang ◽  
Belinda Loh ◽  
Yunsong Yu ◽  
Xiaoting Hua ◽  
Sebastian Leptihn

Few emergency-use antibiotics remain for the treatment of multidrug-resistant bacterial infections. Infections with resistant bacteria are becoming increasingly common. Phage therapy has reemerged as a promising strategy to treat such infections, as microbial viruses are not affected by bacterial resistance to antimicrobial compounds. However, phage therapy is impeded by rapid emergence of phage-resistant bacteria during therapy. In this work, we studied phage-resistance of colistin sensitive and resistant A. baumannii strains. Using whole genome sequencing, we determined that phage resistant strains displayed mutations in genes that alter the architecture of the bacterial envelope. In contrast to previous studies where phage-escape mutants showed decreased binding of phages to the bacterial envelope, we obtained several not uninfectable isolates that allowed similar phage adsorption compared to the susceptible strain. When phage-resistant bacteria emerged in the absence of antibiotics, we observed that the colistin resistance levels often decreased, while the antibiotic resistance mechanism per se remained unaltered. In particular the two mutated genes that conveyed phage resistance, a putative amylovoran- biosynthesis and a lipo-oligosaccharide (LOS) biosynthesis gene, impact colistin resistance as the mutations increased sensitivity to the antibiotic.


Sign in / Sign up

Export Citation Format

Share Document