scholarly journals Bombyx mori gloverin A2 alleviates enterotoxigenic Escherichia coli-induced inflammation and intestinal mucosa disruption

Author(s):  
Qian Lin ◽  
Guoqi Su ◽  
Aimin Wu ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

Abstract Background Enterotoxigenic Escherichia coli (ETEC) is one of the leading bacterial causes of intestinal inflammation and diarrhea. However, the ETEC is frequently resistant to common antibiotics. In this study, we explored the role of a novel antibacterial peptide Bombyx mori gloverin A2 (BMGlvA2) in alleviating ETEC-induced inflammation and intestinal epithelium disruption in mice. Methods An ETEC-challenged mice model was used, and the ETEC-challenged mice and non-challenged mice were treated by the BMGlvA2 at different doses. Results ETEC challenge not only elevated the concentrations of serum inflammatory cytokines such as the IL-6 and TNF-α (P < 0.01), but also elevated the concentrations of serum creatinine and urea (P < 0.05). However, BMGlvA2 attenuated the inflammatory responses by decreasing the serum inflammatory cytokines and improving the metabolisms in ETEC-challenged mice, and alleviated the ETEC-induced tissue damage in spleen. Moreover, BMGlvA2 treatment significantly elevated the duodenum villus height and decreased the crypt depth in the duodenum and ileum in ETEC-challenged mice (P < 0.05). Interestingly, BMGlvA2 improved the distribution and abundance of tight-junction protein ZO1 in duodenum and ileum epithelium after ETEC-challenge. Moreover, BMGlvA2 significantly down-regulated the expression levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and the apoptosis-related genes (Caspase 8 and Caspase 9) in jejunal mucosa (P < 0.05) in the TETC-challenged mice. Importantly, BMGlvA2 significantly elevated the expression levels of critical genes related to mucosal barrier functions such as the mucins (MUC1 and MUC2) and glucose transporter (GLUT2) in the intestinal mucosa (P < 0.05). Conclusion Our results suggested a novel function of the conventional antibacterial peptides, and the anti-bacterial and anti-inflammatory properties of BMGlvA2 may allow it a potential substitute for conventionally used antibiotics or drugs.

2021 ◽  
Vol 8 ◽  
Author(s):  
Xinxin Jin ◽  
Boyu Yuan ◽  
Mingming Liu ◽  
Mingqiang Zhu ◽  
Xue Zhang ◽  
...  

A high-quality protein substitute, Hermetia illucens (black soldier fly) larvae powder, is rich in protein and often used in animal feed. This study aimed to investigate the feasibility and optimal ratio of replacing fish meal with H. illucens larvae in weaned piglets and to demonstrate the effects on piglets' growth performance, intestinal microflora and immune performance. Forty-eight female weaned piglets were randomly classified into three groups. Each group consisted of eight pens (replicates), with two piglets per pen. Three groups containing different proportions of H. illucens larvae (0, 4, and 8%) were referred to as C, HI4, and HI8. We first designed a 28-day feeding experiment to detect growth performance; after that, the piglets were induced with oral gavage of enterotoxigenic Escherichia coli K88 (ETEC K88) and recording diarrhea on day 29 of the experiment. Samples were taken on the 32nd day to detect the effect of H. illucens larvae on the immune performance of the weaned piglets. H. illucens larvae replacement did not cause any obvious change in the growth performance nether in HI4 nor in HI8 of weaned piglets with 28 d feeding stage. H. illucens larvae could improve the intestinal health of weaned piglets by increasing the content of Lactobacillus and reducing the content of Streptococcus. Compared with C+K88 group, the diarrhea rate was attenuated for the H. illucens supplemented group. The integrity of ileum villi in HI4+K88 and HI8+K88 groups was better than that in C+K88 group, and the villi in C+K88 group were severely damaged. The expression of IL-10, Occludin and Claudin-3 in the intestinal mucosa of the HI4+K88 group and HI8+K88 group were significantly increased (P &lt; 0.05), and the expression of TNF-α was significantly decreased (P &lt; 0.05) compared with the C+K88 group. The results of immunoblotting also validated that the same ETEC K88 treatment of weaned piglets enhanced the expression of tight junction protein in the intestinal mucosa of the H. illucens addition group. ETEC-induced diarrhea will be reduced by the diet of weaned piglets containing H. illucens larvae, ameliorating the immune performance of piglets. Our results indicates that the optimal dosage of H. illucens replacement in weaned piglets is 4%.


PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104192 ◽  
Author(s):  
Dingfu Xiao ◽  
Yongfei Wang ◽  
Gang Liu ◽  
Jianhua He ◽  
Wei Qiu ◽  
...  

2021 ◽  
Author(s):  
Qiao Li ◽  
Yanhong Chen ◽  
Changning Yu ◽  
Paula Azevedo ◽  
Joshua Gong ◽  
...  

Abstract Background: Enterotoxigenic Escherichia coli (ETEC) F4 commonly colonizes the small intestine and releases enterotoxins that impair the intestinal barrier function and trigger inflammatory responses. Although Bacillus licheniformis (B. licheniformis) has been reported to enhance intestinal health, it remains to be seen whether there is a functional role of B. licheniformis in intestinal inflammatory response in intestinal porcine epithelial cell line (IPEC-J2) when stimulated with ETEC F4.Methods: In the present study, the effects of B. licheniformis PF9 on the release of pro-inflammation cytokines, cell integrity and nuclear factor-κB (NF-κB) activation were evaluated in ETEC F4-induced IPEC-J2 cells.Results: B. licheniformis PF9 treatment was capable of remarkably attenuating the expression levels of inflammation cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-8, and IL-6 during ETEC F4 infection. Furthermore, the gene expression of Toll-like receptor 4 (TLR4)-mediated upstream related genes of NF-κB signaling pathway has been significantly inhibited. These changes were accompanied by a significant decreased phosphorylation of p65 NF-κB during ETEC F4 infection with B. licheniformis PF9 treatment. The immunofluorescence and western blot analysis revealed that B. licheniformis PF9 increased the expression levels of zona occludens 1 (ZO-1) and occludin (OCLN) in ETEC F4-infected IPEC-J2 cells. Meanwhile, the B. licheniformis PF9 could alleviate the epithelial barrier function assessed by the trans-epithelial electrical resistance (TEER) and cell permeability assay. Interestingly, B. licheniformis PF9 protect IPEC-J2 cells against ETEC F4 infection by decreasing the gene expressions of virulence-related factors (including luxS, estA, estB, and elt) in ETEC F4.Conclusions: Collectively, our results suggest that B. licheniformis PF9 might reduce inflammation-related cytokines through blocking the NF-κB signaling pathways. Besides, B. licheniformis PF9 displayed a significant role in the enhancement of IPEC-J2 cell integrity.


2020 ◽  
pp. 1-37
Author(s):  
En Yu ◽  
Daiwen Chen ◽  
Bing Yu ◽  
Zhiqing Huang ◽  
Xiangbing Mao ◽  
...  

Abstract To explore the effect of mannan-oligosaccharide (MOS) on intestinal health in weaned pigs upon Enterotoxigenic Escherichia coli K88 (ETEC) challenge, thirty-two male weaned pigs were randomly assigned into four groups. Pigs fed with a basal diet or basal diet containing MOS (0.6 g/kg) were orally infused with ETEC or culture medium. Results showed that MOS significantly elevated the digestibility of crude protein (CP) and gross energy (GE) in both ETEC-challenged and non-challenged pigs (P < 0.05). MOS also elevated serum concentrations of immunoglobulin (Ig) A and IgM (P < 0.05), but decreased serum concentrations of tumor necrosis factor (TNF)-α, IL-1β, and IL-6 (P < 0.05) in ETEC-challenged pigs. Interestingly, MOS increased villus height and the ratio of villus height to crypt depth (V/C) in duodenum and ileum (P < 0.05). MOS also increased duodenal sucrase and ileal lactase activity in ETEC-challenged pigs (P < 0.05). MOS decreased the abundance of Escherichia coli, but increased the abundance of Lactobacillus, Bifidobacterium, and Bacillus in cecum (P < 0.05). Importantly, MOS not only elevated the expression levels of zonula occludins-1 (ZO-1), claudin-1, and glucose transporter-2 (GLUT-2) in duodenum (P < 0.05), but also elevated the expression levels of ZO-1, GLUT-2, and L-type amino acid transporter-1 (LAT-1) in ileum (P < 0.05) upon ETEC challenge. These results suggested that MOS can alleviate inflammation and intestinal injury in weaned pigs upon ETEC challenge, which was associated with suppressed secretion of inflammatory cytokines and elevated serum immunoglobulins, as well as improved intestinal epithelium functions and microbiota.


2013 ◽  
Vol 394 (10) ◽  
pp. 1317-1324 ◽  
Author(s):  
Hongwei Sun ◽  
Ying Tang ◽  
Xiqin Guan ◽  
Lanfeng Li ◽  
Desheng Wang

Abstract Hypothermia has neuroprotective effects on global cerebral ischemic injuries. However, its efficacy after intracerebral hemorrhage (ICH) is inconclusive. In this study, bacterial collagenase was used to induce ICH stroke in male Wistar rats. We assessed the effects of normothermia and 4 h of local hypothermia (∼33.2°C) initiated 1, 6, or 12 h after collagenase infusion on hemorrhage volume and neurological outcomes. Following early cooling initiated after 1 h, blood-brain barrier (BBB) disruption and brain water content were tested. Furthermore, the expression levels of tight junction (TJ) proteins (claudin 5 and occludin) and the proinflammatory cytokines interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were determined using Western blotting, real-time quantitative PCR, and immunohistochemical staining at 1 and 3 d after ICH. Early local hypothermia tends to reduce hemorrhagic volume and neurological deficits, but the difference is not statistically significant compared with other groups. However, early hypothermia significantly reduces BBB disruption, edema formation, the expression levels of IL-1β and TNF-α, and the loss of TJ proteins. Together, these data suggest that local hypothermia is an effective treatment for edema formation and BBB disruption via the upregulation of TJ proteins and the suppression of TNF-α and IL-1β.


2013 ◽  
Vol 110 (10) ◽  
pp. 1828-1836 ◽  
Author(s):  
José Moisés Laparra ◽  
Marta Olivares ◽  
Yolanda Sanz

Coeliac disease is an autoimmune disorder triggered by gluten intake, causing intestinal inflammation and mucosal damage commonly associated with the malabsorption of nutrients and ferropenic anaemia. The present study evaluates the effects of the oral administration of Bifidobacterium longum CECT 7347 on gliadin-mediated alterations in hepatic Fe deposition and Hb concentration, liver transferrin receptor (TfR)-2, IL-6, TNF-α and hepcidin (Hamp) expression (mRNA), and active hepcidin peptide production by liquid chromatography–MS/MS. Weanling rats, sensitised or not with interferon (IFN)-γ, were fed with gliadins and/or the bifidobacterial strain. Gliadin feeding increased hepatic Fe deposition; however, only gliadin-fed sensitised animals showed lower Hb concentrations than the controls. TfR2 expression decreased after gliadins were fed to both sensitised and non-sensitised animals, and restored by the administration of B. longum. These observations were accompanied by increases in IL-6 expression levels in all the treatment groups; however, TNF-α expression only increased significantly in animals fed gliadins alone or together with B. longum if they had previously been sensitised with IFN-γ. Liver expression levels of Hamp diminished in all cases to the lowest values in animals sensitised with IFN-γ after being fed with gliadins and/or bifidobacteria. In these animals, plasma Hamp active peptide concentrations significantly increased when compared with the controls. Significant correlations were calculated between Hamp expression and liver Fe contents (liver Fe = 1/0·0032+0·032 × Hampexp), and Hb concentrations (Hb = 11·49+10·13 × (Hampexp)1/2). These data indicate that oral administration of B. longum ameliorates gliadin-mediated perturbations in liver Fe deposition and mobilisation.


2014 ◽  
Vol 112 (12) ◽  
pp. 1955-1965 ◽  
Author(s):  
G. Heim ◽  
T. Sweeney ◽  
C. J. O'Shea ◽  
D. N. Doyle ◽  
J. V. O'Doherty

In the present study, a 2 × 2 factorial arrangement was conducted to investigate the effect of maternal supplementation with seaweed extracts ( − SWE v. +SWE, n 20) from day 83 of gestation until weaning (day 28) on post-weaning (PW) growth performance, faecal score, faecal enterotoxigenic Escherichia coli (ETEC) toxin quantification, intestinal histology and cytokine mRNA of unchallenged and ETEC-challenged pigs. Pigs were ETEC challenged on day 9 PW. There was a maternal treatment × challenge (SWE × ETEC) interaction effect on growth performance and faecal score (P< 0·05). Pigs from SWE-supplemented sows and ETEC-challenged (SE) had higher average daily gain (ADG) during 0–13 d PW and reduced faecal score during 0–72 h post-challenge than those from basal-fed sows and ETEC-challenged (BE) (P< 0·05). However, there was no difference between unchallenged pigs from the SWE-supplemented sows (SC) and basal-fed sows (BC) (P>0·10). Pigs from the SWE-supplemented sows had reduced heat-labile enterotoxin gene copy numbers than those from the basal-fed sows (P< 0·05). Maternal SWE supplementation increased the villus height in the ileum of pigs (P< 0·05). There was a SWE × ETEC interaction effect (P< 0·05) on IL-6 mRNA and a SWE × gastrointestinal (GI) region interaction effect (P< 0·05) on transforming growth factor-β1 (TGF-β1) and TNF-α mRNA. IL-6 mRNA was down-regulated in SC pigs than BC pigs (P< 0·05). However, there was no difference in IL-6 mRNA between SE and BE pigs. The mRNA of TGF-β1 and TNF-α was down-regulated in the colon of pigs from the SWE-supplemented sows compared with those from the basal-fed sows (P< 0·05). However, there was no difference in TGF-β1 and TNF-α mRNA in the ileum between the pigs from the SWE-supplemented sows and basal-fed sows. In conclusion, maternal SWE supplementation improves ADG and the aspects of GI health of weaned pigs following an ETEC challenge.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Naiyuan Liu ◽  
Lingsi Zhou ◽  
Jun Fang ◽  
Hongmei Jiang ◽  
Gang Liu

Background/Aims. Changing gut microbiota is one of the most common causes of host gut inflammation. The active triple peptides, lle-Gln-Trp (IQW) and lle-Arg-Trp (IRW), cause remarkable changes to gut microbiota. The effects of the triple peptides IQW and IRW in gut-damage treatment were explored in this study via an enterotoxigenic Escherichia coli- (ETEC-) induced mouse model. Methods. The mice were randomly distributed into four groups: (a) control (CTRL) group, (b) ETEC group, (c) IQW-ETEC group, and (d) IRW-ETEC group. Villus length and crypt depth were measured after hematoxylin and eosin staining. The inflammatory reaction was analyzed via inflammatory cytokines (i.e., TNF-α, IL-1β, IL-6, and IL-10) using the enzyme-linked immunosorbent assay (ELISA). The microbiota in the colon was sequenced using 16S ribosomal RNA. Results. The villus length decreased, the crypt depth decreased, and the expression of inflammatory cytokines (i.e., TNF-α, IL-1β, IL-6, and IL-10) increased due to ETEC. In the IRW-ETEC and IQW-ETEC groups, the Shannon index decreased ( P < 0.05 ). IQW and IRW increased the abundance of Firmicutes, Proteobacteria, Clostridiales, Lachnospiraceae, and Alloprevotella; contrastingly, it decreased the abundance of Epsilonproteobacteria, Erysipelotrichales, Prevotellaceae, and Flavobacteriaceae compared to the ETEC group (P <0.05). Conclusion. This study ascertained that the addition of IQW and IRW could alleviate jejunal inflammation and increase microbiota community diversity.


2021 ◽  
Author(s):  
Qingsheng Niu ◽  
Fang Liu ◽  
Jun Zhang ◽  
Xiaojun Yang ◽  
Xiaohong Wang

Abstract The unique features of post–cardiac arrest pathophysiology are often superimposed on the disease or injury, causing the cardiac arrest, as well as underlying comorbidities. Exogenous carbon monoxide (CO) was reported to reduce ischemia-reperfusion injury (IRI). This study aimed to assess the effects of CO releasing molecule-2 (CORM-2) on intestinal mucosal barrier function after cardiopulmonary resuscitation (CPR) in rats. For this purpose, we established a rat model of asphyxiation-induced cardiac arrest and resuscitation to study intestinal IRI, and measured the serum level of intestinal fatty-acid binding protein (I-FABP). The expression levels of claudin-3, occludin, ZO-1, tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and nuclear factor kappa B (NF-κB) p65 were detected by Western blotting. CORM-2 up-regulated the expression levels of tight junction proteins (claudin-3, occludin, and ZO-1) in intestinal mucosa, leading to the reduction of the permeability of intestinal mucosa and reduced the release of proinflammatory cytokines. Besides, the CORM-2 exhibited anti-inflammatory effects by regulating the TNF-α/NF-κB pathway. In conclusion, CORM-2 treatment is clinically significant, preventing intestinal mucosal damage as a result of IRI during CPR.


Sign in / Sign up

Export Citation Format

Share Document