scholarly journals Aβ43 aggregates exhibit enhanced prion-like seeding activity in mice

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alejandro Ruiz-Riquelme ◽  
Alison Mao ◽  
Marim M. Barghash ◽  
Heather H. C. Lau ◽  
Erica Stuart ◽  
...  

AbstractWhen injected into genetically modified mice, aggregates of the amyloid-β (Aβ) peptide from the brains of Alzheimer’s disease (AD) patients or transgenic AD mouse models seed cerebral Aβ deposition in a prion-like fashion. Within the brain, Aβ exists as a pool of distinct C-terminal variants with lengths ranging from 37 to 43 amino acids, yet the relative contribution of individual C-terminal Aβ variants to the seeding behavior of Aβ aggregates remains unknown. Here, we have investigated the relative seeding activities of Aβ aggregates composed exclusively of recombinant Aβ38, Aβ40, Aβ42, or Aβ43. Cerebral Aβ42 levels were not increased in AppNL−F knock-in mice injected with Aβ38 or Aβ40 aggregates and were only increased in a subset of mice injected with Aβ42 aggregates. In contrast, significant accumulation of Aβ42 was observed in the brains of all mice inoculated with Aβ43 aggregates, and the extent of Aβ42 induction was comparable to that in mice injected with brain-derived Aβ seeds. Mice inoculated with Aβ43 aggregates exhibited a distinct pattern of cerebral Aβ pathology compared to mice injected with brain-derived Aβ aggregates, suggesting that recombinant Aβ43 may polymerize into a unique strain. Our results indicate that aggregates containing longer Aβ C-terminal variants are more potent inducers of cerebral Aβ deposition and highlight the potential role of Aβ43 seeds as a crucial factor in the initial stages of Aβ pathology in AD.

2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


2020 ◽  
Vol 14 ◽  
Author(s):  
Katiuscia Pagano ◽  
Simona Tomaselli ◽  
Henriette Molinari ◽  
Laura Ragona

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, with no cure and preventive therapy. Misfolding and extracellular aggregation of Amyloid-β (Aβ) peptides are recognized as the main cause of AD progression, leading to the formation of toxic Aβ oligomers and to the deposition of β-amyloid plaques in the brain, representing the hallmarks of AD. Given the urgent need to provide alternative therapies, natural products serve as vital resources for novel drugs. In recent years, several natural compounds with different chemical structures, such as polyphenols, alkaloids, terpenes, flavonoids, tannins, saponins and vitamins from plants have received attention for their role against the neurodegenerative pathological processes. However, only for a small subset of them experimental evidences are provided on their mechanism of action. This review focuses on those natural compounds shown to interfere with Aβ aggregation by direct interaction with Aβ peptide and whose inhibitory mechanism has been investigated by means of biophysical and structural biology experimental approaches. In few cases, the combination of approaches offering a macroscopic characterization of the oligomers, such as TEM, AFM, fluorescence, together with high-resolution methods could shed light on the complex mechanism of inhibition. In particular, solution NMR spectroscopy, through peptide-based and ligand-based observation, was successfully employed to investigate the interactions of the natural compounds with both soluble NMR-visible (monomer and low molecular weight oligomers) and NMR-invisible (high molecular weight oligomers and protofibrils) species. The molecular determinants of the interaction of promising natural compounds are here compared to infer the chemical requirements of the inhibitors and the common mechanisms of inhibition. Most of the data converge to indicate that the Aβ regions relevant to perturb the aggregation cascade and regulate the toxicity of the stabilized oligomers, are the N-term and β1 region. The ability of the natural aggregation inhibitors to cross the brain blood barrier, together with the tactics to improve their low bioavailability are discussed. The analysis of the data ensemble can provide a rationale for the selection of natural compounds as molecular scaffolds for the design of new therapeutic strategies against the progression of early and late stages of AD.


2016 ◽  
Vol 27 (4) ◽  
pp. 449-455 ◽  
Author(s):  
Ghulam Abbas ◽  
Wajahat Mahmood ◽  
Nurul Kabir

AbstractDespite their possible causative role, targeting amyloidosis, tau phosphorylation, acetylcholine esterase, glutamate, oxidative stress and mitochondrial metabolism have not yet led to the development of drugs to cure Alzheimer’s disease (AD). Recent preclinical and clinical reports exhibit a surge in interest in the role of GABAergic neurotransmission in the pathogenesis of AD. The interaction among GABAergic signaling, amyloid-β and acetylcholine is shown to affect the homeostasis between excitation (glutamate) and inhibition (GABA) in the brain. As a consequence, over-excitation leads to neurodegeneration (excitotoxicity) and impairment in the higher level functions. Previously, the glutamate arm of this balance received the most attention. Recent literature suggests that over-excitation is primarily mediated by dysfunctional GABA signaling and can possibly be restored by rectifying anomalous metabolism observed in the GABAergic neurons during AD. Additionally, neurogenesis and synaptogenesis have also been linked with GABAergic signaling. This association may provide a basis for the needed repair mechanism. Furthermore, several preclinical interventional studies revealed that targeting various GABA receptor subtypes holds potential in overcoming the memory deficits associated with AD. In conclusion, the recent scientific literature suggests that GABAergic signaling presents itself as a promising target for anti-AD drug development.


2019 ◽  
Vol 4 (2) ◽  
pp. 90-92 ◽  
Author(s):  
Li Zhang ◽  
Michael Chopp ◽  
Quan Jiang ◽  
Zhenggang Zhang

Diabetes mellitus (DM) is a common metabolic disease in the middle-aged and older population, and is associated with cognitive impairment and an increased risk of developing dementia. The glymphatic system is a recently characterised brain-wide cerebrospinal fluid and interstitial fluid drainage pathway that enables the clearance of interstitial metabolic waste from the brain parenchyma. Emerging data suggest that DM and ageing impair the glymphatic system, leading to accumulation of metabolic wastes including amyloid-β within the brain parenchyma, and consequently provoking cognitive dysfunction. In this review, we concisely discuss recent findings regarding the role of the glymphatic system in DM and ageing associated cognitive impairment.


2020 ◽  
Vol 23 (4) ◽  
pp. 322-325
Author(s):  
Miriam R. Conces ◽  
Anna Hughes ◽  
Christopher R. Pierson

Mowat–Wilson syndrome (MWS) is a syndromic form of Hirschsprung disease that is characterized by variable degrees of intellectual disability, characteristic facial dysmorphism, and a diverse set of other congenital malformations due to haploinsufficiency of ZEB2. A variety of brain malformations have been described in neuroimaging studies of MWS patients, and the role of ZEB2 in the brain has been studied in a multitude of genetically engineered mouse models that are now available. However, a paucity of autopsy information limits our ability to correlate data from neuroimaging studies and animal models with actual MWS patient tissues. Here, we report the autopsy neuropathology of a 19-year-old male patient with MWS. Autopsy neuropathology findings correlated well with the reported MWS neuroimaging data and are in keeping with data from genetically engineered MWS mouse models. This autopsy enhances our understanding of ZEB2 function in human brain development and demonstrates the reliability of MWS murine models.


2019 ◽  
Vol 77 (8) ◽  
pp. 1531-1550 ◽  
Author(s):  
Katarzyna Walczak ◽  
Artur Wnorowski ◽  
Waldemar A. Turski ◽  
Tomasz Plech

Abstract Kynurenic acid (KYNA) is an endogenous tryptophan metabolite exerting neuroprotective and anticonvulsant properties in the brain. However, its importance on the periphery is still not fully elucidated. KYNA is produced endogenously in various types of peripheral cells, tissues and by gastrointestinal microbiota. Furthermore, it was found in several products of daily human diet and its absorption in the digestive tract was evidenced. More recent studies were focused on the potential role of KYNA in carcinogenesis and cancer therapy; however, the results were ambiguous and the biological activity of KYNA in these processes has not been unequivocally established. This review aims to summarize the current views on the relationship between KYNA and cancer. The differences in KYNA concentration between physiological conditions and cancer, as well as KYNA production by both normal and cancer cells, will be discussed. The review also describes the effect of KYNA on cancer cell proliferation and the known potential molecular mechanisms of this activity.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S835-S835
Author(s):  
Charnae A Henry-Smith ◽  
Xianlin Han

Abstract Alzheimer’s disease is a progressive brain disease that slowly destroys memory and thinking skills. Alzheimer’s is characterized by an increase in Aβ plaques , and tau tangles. Neurons in the brain have axons covered in myelin sheath that connect microglia and astrocytes. The myelin sheath is composed of about 70% lipid composition; Sulfatide contributing to 30% overall. Sulfatide changes the morphology of primary microglia to their activated form. To study the role of microglia activation and sulfatide levels, three different mouse models were created: APP KI mice, CST Whole Body Ko mice, and cCST (conditional) KO. In order to create the genotype of the APP KI mice, a breeding mouse line was created. The APP KI gene had to be introduced in Plp1-Cre and cCST KO crossed mice to receive a working mouse model. During the duration of breeding for the APP KI mice, a preliminary experiment was performed on the CST KO mice. These mice were given the PLX3397 diet with the aim to remove the microglia and to see the effect of Aβ plaques. The PLX3397 will reduce the microglia targeting the CSF1R. After consuming the diet, the mice were harvested to collect tissues from the brain and spinal cord. Lipidomics and immunohistology were performed. In conclusion, we will continue the breeding of the CST flox/flox / Plp1-Cre / APP KI mice, and the drug dosage and treatment to be used in our APP KI mice will be based on preliminary data from our CST mice.


Sign in / Sign up

Export Citation Format

Share Document