scholarly journals Assessing the potential of biochar aged by humic substances to enhance plant growth and soil biological activity

Author(s):  
Tereza Hammerschmiedt ◽  
Jiri Holatko ◽  
Vaclav Pecina ◽  
Dalibor Huska ◽  
Oldrich Latal ◽  
...  

Abstract Background Soil carbon-rich organic amendments (biochar, humic substances) may improve the quality and fertility of arable soil. Their co-application can additively enhance the beneficial effect on soil. Hypothetically, the pre-treatment of biochar, by aging via soaking in a solution of commercially available humic substances, could result in synergism, which may exceed the benefit from simple co-application of both amendments to the soil. Therefore, the aim of this study was to investigate the impact of biochar, humic substances, the combination of both, and the impact of biochar aged by humic substances solution on soil microbial activities and plant growth in a short-term pot experiment with lettuce. Results The aging of biochar decreased the C:N ratio as compared to non-activated biochar. The co-application of biochar and humic substances into the soil resulted in the highest microbial biomass carbon and respiration activity. The majority of enzyme activities (β-glucosidase, arylsulfatase, N-acetyl-β-d-glucosaminidase, phosphatase) were the highest in humic substances-amended soil. The application of humic substances and biochar with humic substances seemed to stimulate microbial growth and activity followed by the competition of microflora for nutrients with plants, whereas the aged biochar behaved differently. The plants treated by aged biochar achieved the highest values of dry aboveground and root biomass of all variants. However, the assumed rapid uptake of nutrients by plants resulted in lower nutrient availability for microflora, and a decline in microbial viability. Conclusions Based on this study, the positive effect of co-applied humic substances and biochar on soil fertility, quality, and health can be concluded. The usability of biochar aging by humic solution requires further study. Graphic abstract

Author(s):  
L. M. Manici ◽  
F. Caputo ◽  
G. A. Cappelli ◽  
E. Ceotto

Abstract Soil suppressiveness which is the natural ability of soil to support optimal plant growth and health is the resultant of multiple soil microbial components; which implies many difficulties when estimating this soil condition. Microbial benefits for plant health from repeated digestate applications were assessed in three experimental sites surrounding anaerobic biogas plants in an intensively cultivated area of northern Italy. A 2-yr trial was performed in 2017 and 2018 by performing an in-pot plant growth assay, using soil samples taken from two fields for each experimental site, of which one had been repeatedly amended with anaerobic biogas digestate and the other had not. These fields were similar in management and crop sequences (maize was the recurrent crop) for the last 10 yr. Plant growth response in the bioassay was expressed as plant biomass production, root colonization frequency by soil-borne fungi were estimated to evaluate the impact of soil-borne pathogens on plant growth, abundance of Pseudomonas and actinomycetes populations in rhizosphere were estimated as beneficial soil microbial indicators. Repeated soil amendment with digestate increased significantly soil capacity to support plant biomass production as compared to unamended control in both the years. Findings supported evidence that this increase was principally attributable to a higher natural ability of digestate-amended soils to reduce root infection by saprophytic soil-borne pathogens whose inoculum was increased by the recurrent maize cultivation. Pseudomonas and actinomycetes were always more abundant in digestate-amended soils suggesting that both these large bacterial groups were involved in the increase of their natural capacity to control soil-borne pathogens (soil suppressiveness).


2015 ◽  
Vol 6 ◽  
Author(s):  
Mikel Anza

Technical-grade hexachlorocyclohexane (HCH) has been widely used for human health and agricultural purposes. Consequently, HCH residues have entered the soil ecosystem with concomitant deleterious effects on soil quality. The aim of this study was to assess the impact of HCH on soil microbial properties as biological indicators of soil quality. To this end, non-polluted soil was spiked with different amounts of a heavily HCH-polluted soil in order to obtain a concentration gradient between 0 and 1,500 mg HCH kg<sup>-1</sup> dry matter soil. The mixtures were incubated under laboratory conditions for 2 months. Dehydrogenase activity, fluorescein diacetate hydrolysis activity (FDA), basal respiration, substrate-induced respiration (SIR), microbial biomass carbon, metabolic potential, and the soil quality index were negatively affected by increasing HCH concentrations in soil, in many cases following an exponential pattern. FDA and SIR appear <em>a priori</em> suitable indicators for the impact of HCH on soil microbial properties and, hence, soil quality.


2021 ◽  
Author(s):  
Maria-Cristina Ordoñez ◽  
Leopoldo Galicia ◽  
Karla Valladares-Samperio

Abstract Sustainable silvicultural management requires the maintenance of long-term ecosystem processes. We used the CENTURY model to simulate the impact of wood extraction and organic amendments on aboveground biomass, carbon (C) storage, and the availability of nitrogen (N) in the two dominant silvicultural methods in Mexico: the silvicultural development method (SDM) and irregular forest management (IFM). The values of the mean absolute percentage error for the SDM and IFM were 2.1% and 3.3% for C in aboveground biomass, 5.7% and 5.0% for soil organic carbon (SOC), and 14.9% and 21.6% for N, respectively. Simulation for the SDM (1967–2068) suggested a reduction of ~7% in C in soil, microbial biomass, and litter, 9% in aboveground biomass C, and ~20% in the mineral N available. For IFM, the simulation (2009–2019) suggested a reduction of 14% in the accumulation of aboveground biomass and 13% in the mineral N available. Simulation of the adoption of management practices suggested that N mineral availability would increase by 2%–3% without drastically reducing the SOC, improving aboveground biomass production by ~7%, in each management system. Study Implications In Mexico, current silvicultural management is causing alterations in the biological and chemical processes of the soil, but the future impacts on the production of forest wood and loss of fertility cannot be estimated by direct measurements. We simulated two silvicultural management alternatives with two rotation cycles and measured the response in terms of SOC, nitrogen availability, and aboveground biomass. The model shows that improving forest residue management by adding organic amendments to the soil would counteract changes in soil microbial activity, nitrogen availability, SOC, and aboveground biomass in the future. Managers should consider this information to reorient current crop residue management to achieve the objectives and the sustainability of forest management in Mexican temperate forests.


2021 ◽  
Vol 25 (11) ◽  
pp. 34-37
Author(s):  
Anis Naushi ◽  
Ajay Kumar Arya

This investigation was aimed toward assessing the impact of heavy metals on soil microbial cycles. The impacts of lead (Pb) and cadmium (Cd) at various concentrations were researched over a time of about two months. Chloride salts of Pb and Cd were added independently and in blend to soil samples at room temperature (27ºC) in various polythene packs. Samples were taken from the sacks at about fourteen days span and estimations were taken of the microbial biomass carbon (MBC). The outcomes showed that there was a significant reduction in the microbial biomass carbon for all treated soils from the second week to the 6th week. However, on 8th week, increase in microbial biomass carbon was observed. At the 6th week, 2000mgkg-1Pb and 40mgkg-1Cd gave the main reduction (P < 0.05) in microbial biomass carbon of 98%. A critical decrease in biomass carbon in metal contaminated soil demonstrated that this parameter is a decent marker of toxicity of metals on soil microflora.


2012 ◽  
Vol 38 (6) ◽  
pp. 262-276
Author(s):  
P. Eric Wiseman ◽  
Susan Day ◽  
J. Roger Harris

There is increasing interest in amending degraded soils with organic matter to improve soil quality, especially in urban areas where rehabilitation of damaged soils may enhance tree growth and provision of ecosystem services. To assess the potential of such organic amendments for producing a sustained alteration in soil biological characteristics, researchers studied the effects of three organic amendments incorporated into the root zone of three tree species on root development, soil carbon dynamics, and soil microbial biomass over one year beginning 20 months after amendment application. Soil amendment with leaf-based, and to a lesser extent, biosolids-based composts increased root length within the amended root zone of red maple (Acer rubrum), but not of pin oak (Quercus palustris) or chestnut oak (Q. montana). There was a concomitant increase in microbial biomass carbon for red maple. Across all species, sphagnum peat moss amendment reduced microbial biomass carbon by 47% compared to unamended root zones and suppressed maximum seasonal soil respiration relative to composts. In contrast, leaf-based compost increased microbial biomass carbon by 12% (P = 0.0989) compared to unamended root zones. Carbon/nitrogen ratios remained stable throughout most of the year except in the root zones of chestnut oak and pin oak amended with peat, where it declined 44%–85%. Total soil carbon was stable in all treatments, although unamended soils averaged about 40% lower than amended soils. Across all species and treatments, cumulative fine root length explained 19% of the variation in microbial biomass carbon. The study authors conclude that soil microbial activity can be increased by compost amendment of the root zone and that this increase is mediated to some degree by tree roots. In addition, stable C/N ratios suggest this alteration in the root zone may be sustainable. Further research may clarify whether compost amendment combined with tree planting can accelerate soil restoration.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1516
Author(s):  
Aown Abbas ◽  
Muhammad Naveed ◽  
Muhammad Azeem ◽  
Muhammad Yaseen ◽  
Rehmat Ullah ◽  
...  

In the present study, we investigated the impact of different combinations of wheat straw biochar, compost and biogas slurry on maize growth, physiology, and nutritional status in less productive soils. The experiment was performed as a completely randomized block design in a greenhouse pot experiment. The compost and biogas slurry were applied with and without biochar. The results revealed that a combination of biochar, compost, and biogas slurry enhanced the cation exchange capacity (31%), carbon (83%), phosphorus (67%) and potassium (81%) contents in the soil. Likewise, a significant increase in soil microbial biomass carbon (15%) and nitrogen (37%) was noticed with the combined use of all organic amendments. Moreover, the combined application of biochar, compost and biogas slurry enhanced soil urease and β-glucosidase activity up to 96% and 67% over control respectively. In addition, plant height, chlorophyll content, water use efficiency and 1000-grain weight were also enhanced up to 54%, 90%, 53% and 21% respectively, with the combined use of all amendments. Here, biochar addition helped to reduce the nutrient losses of compost and biogas slurry as well. It is concluded that biochar application in combination with compost and biogas slurry could be a more sustainable, environment-friendly and cost-effective approach, particularly for less fertile soils.


2016 ◽  
Vol 3 (2) ◽  
Author(s):  
R Saha ◽  
Kamlesh Malakar ◽  
VASSANDA COUMAR ◽  
J SOMASUNDARAM ◽  
M Mohanty

An incubation study was conducted to characterize soil quality as affected by organic amendments (FYM, biochar and, poultry manure @ 25 t ha-1) along with or without fly ash (@ 22.4 t ha-1) in Vertisol. Physical and chemical parameters of soil quality like pH, EC, bulk density, porosity, moisture content, organic carbon and available N, P, K measured at the end of incubation period i.e. 10th week showed that combined application of soil amendments (FYM + fly ash, biochar + fly ash, poultry manure + fly ash) had significantly better results than individual application of the respective soil amendments. Soil microbial biomass carbon (SMBC) and dehydrogenase enzyme activity (DHA) increased steadily up to 6th weeks of incubation with a marginal decrease during last phase. At the end of incubation period (10th week), SMBC and DHA was highest in the soil amended with FYM + fly ash; T (476.6 mg/kg of soil and 10.28 μg TPF g-1 soil h-1). The soils treated with 5 organic amendments particularly FYM and poultry manure along with fly ash showed best performance in terms of soil quality improvement in Vertisol.


2017 ◽  
Vol 15 (1) ◽  
pp. e03R01 ◽  
Author(s):  
Gustavo Santoyo ◽  
Claudia Hernández-Pacheco ◽  
Julie Hernández-Salmerón ◽  
Rocio Hernández-León

Microbial soil communities are active players in the biogeochemical cycles, impacting soil fertility and interacting with aboveground organisms. Although soil microbial diversity has been studied in good detail, the factors that modulate its structure are still relatively unclear, especially the environmental factors. Several abiotic elements may play a key role in modulating the diversity of soil microbes, including those inhabiting the rhizosphere (known as the rhizosphere microbiome). This review summarizes relevant and recent studies that have investigated the abiotic factors at different scales, such as pH, temperature, soil type, and geographic and climatic conditions, that modulate the bulk soil and rhizosphere microbiome, as well as their indirect effects on plant health and development. The plant–microbiome interactions and potential benefits of plant growth-promoting rhizobacteria are also discussed. In the last part of this review, we highlight the impact of climate change on soil microorganisms via global temperature changes and increases in ultraviolet radiation and CO2 production. Finally, we propose the need to understand the function of soil and rhizospheric ecosystems in greater detail, in order to effectively manipulate or engineer the rhizosphere microbiome to improve plant growth in agricultural production.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Devanshi Singh ◽  
Priyanka Sharma ◽  
Ujjwal Kumar ◽  
Achlesh Daverey ◽  
Kusum Arunachalam

Abstract Background Forest fire incidences in the Himalayan region of Uttarakhand, India are very common in summers. Pine and oak are the principal and dominant species of Himalayan subtropical forest and Himalayan temperate forest, respectively. Forest vegetation influences the physicochemical and biological properties of soil and forest fire in pine and oak forests may have a different effect on the physicochemical and biological properties of soil. Therefore, the present study was carried out to assess the impact of forest fire on soil microbial properties, enzymatic activity, and their relationship with soil physicochemical properties in the advent of forest fire in the pine and oak forests of the Garhwal region of Uttarakhand Himalaya, India. Results The soil microbial biomass carbon and nitrogen, soil basal respiration, and acid phosphatase activity decreased, whereas dehydrogenase activity increased at burnt sites of both forest types. The overall change in soil microbial biomass carbon was 63 and 40% at the burnt oak forest and burnt pine forest, respectively. Dehydrogenase activity and acid phosphatase activity showed a strong positive correlation with soil organic matter (r = 0.8) and microbial indices, respectively. The ratio of soil microbial biomass carbon/nitrogen was reduced at burnt sites of both forest types. Factor analysis results showed that fire had a significant impact on soil characteristics. The soil basal respiration was linked with macro- and micronutrients at burnt sites, whereas at control sites, it was linked with physicochemical properties of soil along with nutrients. Conclusion Forest fire had a significant impact on soil properties of both forest types. The impact of forest fire on soil microbial biomass carbon was stronger in the oak forest than in the pine forest. Forest type influenced soil enzymatic activity at burnt sites. The bacterial community was dominated over fungi in burnt sites of both forests. Soil microbial indices can be used as a selective measure to assess the impact of fire. Furthermore, forest type plays an important role in regulating the impact of forest fire on soil properties.


Sign in / Sign up

Export Citation Format

Share Document