scholarly journals Evolution of the geological structure and mechanical properties due to the collision of multiple basement topographic highs in a forearc accretionary wedge: insights from numerical simulations

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Ayumu Miyakawa ◽  
Atsushi Noda ◽  
Hiroaki Koge

AbstractWe propose a conceptual geological model for the collision of multiple basement topographic highs (BTHs; e.g., seamounts, ridges, and horsts) with a forearc accretionary wedge. Even though there are many BTHs on an oceanic plate, there are few examples of modeling the collision of multiple BTHs. We conducted numerical simulations using the discrete element method to examine the effects of three BTH collisions with forearcs. The typical geological structure associated with a BTH collision was reproduced during the collision of the first BTH, and multiple BTH collisions create a cycle of formation of BTH collisional structures. Each BTH forces the basal décollement to move up to the roof décollement, and the roof décollement becomes inactive after the passage of the BTH, and then the décollement moves down to the base. As the active décollement position changes, the sequences of underthrust sediments and uplifted imbricate thrusts are sandwiched between the décollements and incorporated into the wedge. At a low horizontal compressive stress, a “shadow zone” is formed behind (i.e., seaward of) the BTH. When the next BTH collides, the horizontal compressive stress increases and tectonic compaction progresses, which reduce the porosity in the underthrust sediments. Heterogeneous evolution of the geological and porosity structure can generate a distinctive pore pressure pattern. The underthrust sediments retain fluid in the “shadow” of the BTH. Under the strong horizontal compressive stresses associated with the next BTH collision, pore pressure increases along with a rapid reduction of porosity in the underthrust sediments. The distinctive structural features observed in our model are comparable to the large faults in the Kumano transect of the Nankai Trough, Japan, where a splay fault branches from the plate boundary and there are old and active décollements. A low-velocity and high-pore-pressure zone is located at the bottom of the accretionary wedge and in front (i.e., landward) of the subducting ridge in the Kumano transect. This suggests that strong horizontal compressive stresses associated with the current BTH collision has increased the pore pressure within the underthrust sediments associated with previous BTHs.

2021 ◽  
Author(s):  
Ayumu Miyakawa ◽  
Atsushi Noda ◽  
Hiroaki Koge

Abstract We propose a conceptual geological model for the collision of multiple basement topographic highs (BTHs; e.g., seamounts, ridges, and horsts) with a forearc accretionary wedge. Even though there are many BTHs on an oceanic plate, there are few examples of modeling the collision of multiple BTHs. We conducted numerical simulations using the discrete element method to examine the effects of three BTH collisions with forearcs. The typical geological structure associated with a BTH collision was reproduced during the collision of the first BTH, and multiple BTH collisions create a cycle of formation of BTH collisional structures. Each BTH forces the basal décollement to move up to the roof décollement, and the roof décollement becomes inactive after the passage of the BTH, and then the décollement moves down to the base. As the active décollement position changes, the sequences of underthrust sediments and uplifted imbricate thrusts are sandwiched between the décollements and incorporated into the wedge. At a low horizontal compressive stress, a “shadow zone” is formed behind (i.e., seaward of) the BTH. When the next BTH collides, the horizontal compressive stress increases and tectonic compaction progresses, which reduce the porosity in the underthrust sediments. Heterogeneous evolution of the geological and porosity structure can generate a distinctive pore pressure pattern. The underthrust sediments retain fluid in the “shadow” of the BTH. Under the strong horizontal compressive stresses associated with the next BTH collision, pore pressure increases along with a rapid reduction of porosity in the underthrust sediments. The distinctive structural features observed in our model are comparable to the large faults in the Kumano transect of the Nankai Trough, Japan, where a splay fault branches from the plate boundary and there are old and active décollements. A low-velocity and high-pore-pressure zone are located at the bottom of the accretionary wedge and in front (i.e., landward) of the subducting ridge in the Kumano transect. This suggests that strong horizontal compressive stresses associated with the current BTH collision has increased the pore pressure within the underthrust sediments associated with previous BTHs.


2005 ◽  
Vol 108-109 ◽  
pp. 181-186 ◽  
Author(s):  
Valentin V. Emtsev ◽  
Boris A. Andreev ◽  
Gagik A. Oganesyan ◽  
D.I. Kryzhkov ◽  
Andrzej Misiuk ◽  
...  

Effects of compressive stress on oxygen agglomeration processes in Czochralski grown silicon heat treated at T= 450OC, used as a reference temperature, and T= 600OC to 800OC are investigated in some detail. Compressive stresses of about P= 1 GPa lead to enhanced formation of Thermal Double Donors in materials annealed over a temperature range of T= 450OC – 600OC. It has been shown that the formation of thermal donors at T= 450OC under normal conditions and compressive stress is accompanied with loss of substitutional boron. In contrast, the concentration of the shallow acceptor states of substitutional boron in silicon annealed under stress at T≥ 600OC remains constant. An enhancement effect of thermal donor formation is gradually weakened at T≥ 700OC. The oxygen diffusivity sensitive to mechanical stress is believed to be responsible for the observed effects in heat-treated silicon.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini

AbstractThe Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.


2018 ◽  
Vol 8 (12) ◽  
pp. 2598 ◽  
Author(s):  
Haiying Ma ◽  
Xuefei Shi ◽  
Yin Zhang

Twin-I girder bridge systems composite with precast concrete deck have advantages including construction simplification and improved concrete strength compared with traditional multi-I girder bridge systems with cast-in-place concrete deck. But the cracking is still a big issue at interior support for continuous span bridges using twin-I girders. To reduce cracks occurrence in the hogging regions subject to negative moments and to guarantee the durability of bridges, the most essential way is to reduce the tensile stress of concrete deck within the hogging regions. In this paper, the prestressed tendons are arranged to prestress the precast concrete deck before it is connected with the steel girders. In this way, the initial compressive stress induced by the prestressed tendons in the concrete deck within the hogging region is much higher than that in regular concrete deck without prestressed tendons. A finite element analysis is developed to study the long-term behaviour of prestressed concrete deck for a twin-I girder bridge. The results show that the prestressed tendons induce large compressive stresses in the concrete deck but the compressive stresses are reduced due to concrete creep. The final compressive stresses in the concrete deck are about half of the initial compressive stresses. Additionally, parametric study is conducted to find the effect to the long-term behaviour of concrete deck including girder depth, deck size, prestressing stress and additional imposed load. The results show that the prestressing compressive stress in precast concrete deck is transferred to steel girders due to concrete creep. The prestressed forces transfer between the concrete deck and steel girder cause the loss of compressive stresses in precast concrete deck. The prestressed tendons can introduce some compressive stress in the concrete deck to overcome the tensile stress induced by the live load but the force transfer due to concrete creep needs be considered. The concrete creep makes the compressive stress loss and the force redistribution in the hogging regions, which should be considered in the design the twin-I girder bridge composite with prestressed precast concrete deck.


Author(s):  
B. L. Josefson ◽  
J. Alm ◽  
J. M. J. McDill

The fatigue life of welded joints can be improved by modifying the weld toe geometry or by inducing beneficial compressive residual stresses in the weld. However, in the second case, the induced compressive residual stresses may relax when the welded joint is subjected to cyclic loading containing high tensile or compressive stress peaks. The stability of induced compressive stresses is investigated for a longitudinal gusset made of a S355 steel. Two methods are considered; either carrying out a high frequency mechanical impact (HFMI) treatment after welding or alternatively using low transformation temperature (LTT) electrodes during welding. The specimen is then subjected to a cyclic loading case with one cycle with a tensile peak (with magnitude reaching the local yield stress level) followed by cycles with constant amplitude. A sequential finite element analysis (FEA) is performed thereby preserving the history of the elasto-plastic behavior. Both the welding process and the HFMI treatment are simulated using simplified approaches, i.e., the welding process is simulated by applying a simplified thermal cycle while the HFMI treatment is simulated by a quasi-static contact analysis. It is shown that using the simplified approaches to modelling both the welding process and HFMI treatment gives results that correlate qualitatively well with the experimental and FEA data available in the literature. Thus, for comparison purposes, simplified models may be sufficient. Both the use of the HFMI treatment and LTT electrodes give approximately the same compressive stress at the weld toe but the extent of the compressive stress zone is deeper for HFMI case. During cyclic loading it is shown that the beneficial effect of both methods will be substantially reduced if the test specimen is subjected to unexpected peak loads. For the chosen load sequence, with the same maximum local stress at the weld toe, the differences in stress curves of the HFMI-treated specimen and that with LTT electrodes remain. While the LTT electrode gives the lowest (compressive) stress right at the well toe, it is shown that the overall effect of the HFMI treatment is more beneficial.


2008 ◽  
Vol 55-57 ◽  
pp. 281-284 ◽  
Author(s):  
N. Wongdamnern ◽  
Athipong Ngamjarurojana ◽  
Supon Ananta ◽  
Yongyut Laosiritaworn ◽  
Rattikorn Yimnirun

Effects of electric field-amplitude and mechanical stress on hysteresis area were investigated in partially depoled hard PZT bulk ceramic. At any compressive stress, the hysteresis area was found to depend on the field-amplitude with a same set of exponents to the power-law scaling. Consequently, inclusion of compressive stresses into the power-law was also obtained in the form of < A – Aσ=0 > α E05.1σ1.19 which indicated the difference of the energy dissipation between the under-stress and stress-free conditions.


2011 ◽  
Vol 308-310 ◽  
pp. 1571-1576 ◽  
Author(s):  
Xiu Feng ◽  
Feng Lu ◽  
Guo Liang Shen

Metallic gasket seals are widely used in pressure vessels and piping. The failure of sealing systems is mostly caused not by the strength of flanges or bolts but by the leakage of the connections. The contact area of sealing surface has a major influence on the leakage of the bolted flange connections. The contact model of sealing surfaces of the flange and the metallic gasket was established on the basis of the modified M-B model, and the relationship between the contact area and the compressive stress is obtained. It’s found that the bigger the compressive stress, the bigger the contact area. When the compressive stresses are identical, the bigger fractal dimension and the less scale coefficient, the bigger the contact area. These can be used in the evaluation of sealing behavior of metallic gaskets.


Sign in / Sign up

Export Citation Format

Share Document