scholarly journals Sisal leaf decortication liquid residue for controlling Meloidogyne javanica in tomato plants

2015 ◽  
Vol 33 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Josilda CA Damasceno ◽  
Ana CF Soares ◽  
Fábio N Jesus ◽  
Rosane S Sant'Ana

The effect of sisal liquid residue (fresh and fermented) was evaluated in controlling the root-knot nematode (Meloidogyne javanica) in tomato plants. Bioassays were conducted in vitro with 100 µL of an aqueous suspension containing 300 juveniles (J2) of M. javanica and 1000 µL of sisal liquid residue. The treatments consisted of nematode immersion for 24 and 48 hours in sisal liquid residue, fresh or fermented, diluted in water to the final concentrations of 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5 and 20%, and nematicide Carbofuran at 350 mg of the active ingredient per liter. Under greenhouse conditions, 4000 juveniles of M. javanica were inoculated on tomato plants grown in pots, and after one week, 100 mL of sisal liquid residue at concentrations of 0, 4, 8, 12, 16 and 20%, were added to soil around the tomato plants. Control treatments received either 100 mL of distilled water or 0.5 g of Carbofuran per pot. Forty days after inoculation, plants were harvested and evaluated for plant growth and root damage. In addition, the selective effect of sisal liquid residue on growth of beneficial soil microorganisms was evaluated. All concentrations of sisal liquid residue presented nematicidal effect, after 48 h of nematode exposure. A mortality rate of 100% was obtained for M. javanica juveniles exposed to liquid residue at a concentration of 20%. Application of increasing concentrations of both sisal liquid residues reduced the number of galls and egg masses per plant and per gram of roots, as well as the final population of M. javanica in soil. Growth of beneficial soil microorganisms was observed in soil amended with sisal fresh liquid residue, for all concentrations tested. The fermented residue caused inhibition of soil beneficial microorganisms. Future studies should be conducted to test the nematicidal effect on tomato plants under field conditions.

Nematology ◽  
2001 ◽  
Vol 3 (2) ◽  
pp. 159-164 ◽  
Author(s):  
Yuji Oka

AbstractNematicidal activity of eight essential oil components; trans -anethole, anis alcohol, p-anisaldehyde, benzaldehyde, 4-methoxyphenol, trans-cinnamaldehyde, (R)-(+)-pulegone, 2-furaldehyde, and a non-essential oil component anisole, was tested against the root-knot nematode Meloidogyne javanica in solutions in 200-ml and 3-l pots and in microplots. Among the anisole derivatives, p-anisaldehyde showed the highest nematicidal activity in solutions and in soil. However, trans-cinnamaldehyde, 2-furaldehyde and benzaldehyde showed higher nematicidal activity than p-anisaldehyde in the 3-l pot experiments. EC50 values of trans-cinnamaldehyde for juvenile immobilisation and hatching inhibition in vitro were as low as 15 and 11.3 μl/l, respectively. In the 3-l pot experiments, trans-cinnamaldehyde, 2-furaldehyde, benzaldehyde and carvacrol at a concentration of 100 mg/kg greatly reduced the root galling of tomato, whereas trans-anethole was not effective. In a microplot experiment, soil treatment with trans-cinnamaldehyde (50 ml/m2) reduced the galling index and increased the shoot weight of tomato plants. Although further experiments, such as development of formulations and application methods, are needed, some essential oil components, especially aldehydes, can be developed into lowtoxicity nematicides.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Mahsa Rostami ◽  
Akbar Karegar ◽  
S. Mohsen Taghavi

Abstract Background Root-knot nematodes (Meloidogyne spp.) are the most destructive agricultural pests, which parasitize thousands of different plant species in the world. Using antagonistic bacteria can be a potential alternative to hazardous chemical nematicides. This study was conducted to evaluate the biocontrol activities of the bacteria isolated from vermicompost and earthworm against M. javanica in infected tomato plants. Results Seventeen bacteria were isolated from vermicompost and earthworm. Their antagonistic effects were tested against the root-knot nematode M. javanica in laboratory and in glasshouse experiments. In the preliminary screening test, 8 bacterial isolates significantly caused more than 50% decrease in reproduction factor (Rf) of the nematode on tomato plants. Six isolates with more than 60% reduction in the nematode Rf were selected and identified as follows: Lysinibacillus fusiformis C1, Bacillus megaterium C3, B. safensis VW3, Pseudomonas resinovorans VW4, Lysinibacillus sp. VW6, and Sphingobacterium daejeonense LV1 by 16S rRNA gene sequencing. The isolates B. megaterium C3, B. safensis VW3, P. resinovorans VW4, and L. fusiformis C1 inhibited the nematode egg hatching by 20–28%, and Lysinibacillus sp. VW6 and L. fusiformis C1 caused 15 and 20% mortality of the second-stage juveniles in vitro. In a glasshouse, the 6 bacterial isolates reduced the nematode Rf by 47–66%, and P. resinovorans VW4 was the most effective isolate. However, B. safensis VW3, B. megaterium C3, and L. fusiformis C1 had the best effect on plant growth. Conclusions Most of the bacteria isolated from earthworm or vermicompost had nematicidal properties. This study provided empirical evidence of the nematicidal potential of isolates Lysinibacillus fusiformis C1, Pseudomonas resinovorans VW4, and Sphingobacterium daejeonense LV1 and the antagonistic activities of Bacillus megaterium C3 and B. safensis VW3 against Meloidogyne javanica.


2017 ◽  
Vol 38 (5) ◽  
pp. 2995 ◽  
Author(s):  
Adriely Alves de Almeida ◽  
Vinicius Hicaro Frederico Abe ◽  
Ricardo Marcelo Gonçalves ◽  
Maria Isabel Balbi-Peña ◽  
Débora Cristina Santiago

The objective of this study was to evaluate the efficacy of the active ingredient abamectin, either in isolation or in combination with fungicides and insecticides formulated for the industrial seed treatment, on the population of Meloidogyne javanica, tested under greenhouse and in vitro conditions. In both tests, the combination of the following treatments was assessed: abamectin; thiamethoxam; fludioxonil + metalaxyl-M + thiabendazole. Water was used as control for the in vitro assay, whereas under greenhouse conditions, controls were inoculated and not inoculated with M. javanica. The tests were conducted in a completely randomized design with six (in vitro) and ten (greenhouse) replicates. For in vitro studies the effect on hatching, motility, and mortality of juveniles of M. javanica was evaluated. Under greenhouse conditions, the soybean ‘BRS 133’ seeds were treated, and at 15, 30, and 60 days after inoculation (DAI) with M. javanica, plant measurements were recorded. The penetration of second stage juveniles (J2) was also evaluated at 15 DAI. At 30 DAI, galls, egg masses, nematodes/g of root, and final population were evaluated. At 60 DAI, the final population of nematodes in the roots was quantified. The treatments containing abamectin were the most effective in diminishing the hatching of juveniles. All treatments had an effect on nematode motility when compared to the control, and in the treatment containing only abamectin, total juvenile mortality was observed. In greenhouse conditions, at 15 DAI, the treated soybean plants had the highest root mass and shoot length, differing statistically from the inoculated control. All treatments reduced the number of nematodes per gram of root, differing from the control. At 30 DAI, treatment efficiency was observed in reducing the final population of M. javanica, particularly the treatments using abamectin, and abamectin + thiamethoxam + fludioxonil + metalaxyl-M + thiabendazole. However, at 60 DAI, the effect of the treatments on the population of M. javanica did not persist.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
I Gede Swibawa I Gede ◽  
YUYUN FITRIANA ◽  
SOLIKHIN ◽  
RADIX SUHARJO ◽  
F.X. SUSILO ◽  
...  

Abstract. Swibawa IG, Fitriana Y, Solikhin, Suharjo R, Susilo FX, Rani E, Haryani MS, Wardana RA. 2020. Morpho-molecular identification and pathogenicity test on fungal parasites of guava root-knot nematode eggs in Lampung, Indonesia. Biodiversitas 21: 1108-1115. This study aimed to obtain and discover the identity of the species of fungal egg parasites of root-knot nematodes (RKN), which have a high pathogenic ability causing major losses in vegetable crops. The exploration of the fungi was carried out in 2016 and 2018 from Crystal guava plantations in East Lampung, Central Lampung, Tanggamus, and NirAma, a commercial product that has been used for controlling Meloidogyne sp. in Indonesia. Identification was carried out based on morphological characteristics and molecular-based gene sequential analysis of Intergenic Transcribed Spacer (ITS) 1 and ITS 4. A pathogenicity test was carried out in vitro and in a greenhouse using tomato plants as indicator plants. In the in vitro test, observations were made on the percentage of infected RKN eggs. The observations in the greenhouse test were carried out on RKN populations in the soil and roots of tomato plants, root damage (root knots), and damage intensity due to RKN infection. The exploration resulted in five isolates of fungal egg parasites of RKN from the guava plantations in East Lampung (2), Central Lampung (1), Tanggamus (1), and from the isolation results of commercial products (1). The isolates were given codes as B4120X (PT GGP PG1), B3010 (PT GGP PG4), B412G (PT GGP PG 4), B01TG (Tanggamus), and BioP (Commercial products). Based on their morphological characteristics, the isolates were classified into the genus of Paecilomyces. The results of molecular identification showed that the discovered fungi were Purpureocillium lilacinum (Thom.) Luangsa Ard. (Syn. Paecilomyces lilacinus (Thom.) Samson.). Based on the in vitro tests, the five fungal isolates were able to parasitize RKN eggs at 86.4-100%. In the greenhouse test, all isolates significantly suppressed nematode populations in the soil and tomato roots, inhibited the formation of root knots, and produced lower damage intensity compared to controls. Among all the isolates tested, B01TG had the best ability to infect nematode eggs (99.5%), suppressing the formation of root knots, nematode population in the soil and the roots of tomato plants, and the damage intensity compared to other isolates.


2019 ◽  
Vol 37 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Jéssica Cardoso ◽  
Luiza Tonelli ◽  
Talita S Kutz ◽  
Fernanda D Brandelero ◽  
Thiago de O Vargas ◽  
...  

ABSTRACT Intensive production of vegetables in greenhouses can increase the amount of inoculum of soil-borne pathogens, such as the root-knot nematode. Thus, in this study we aimed to evaluate the potential of Solanaceae as rootstocks resistant to Meloidogyne javanica nematodes as an alternative to tomato grafting. The experiment consisted of seven treatments: wild species joá-vermelho (Solanum capsicoides), joá-bagudo (Solanum palinacanthum), joá-bravo (Solanum viarum), jurubeba (Solanum spp.) and the commercial tomato cultivars Santa Cruz Kada, Batalha and Guardião. The analyzed variables were gall index; egg mass index; final nematode population; reproduction factor (FR) and reaction: susceptibility, resistance and immunity; fresh shoot and root mass and number of eggs per gram of roots. The wild species joá-vermelho, joá-bagudo and jurubeba showed resistance, with the lowest indexes of galls, egg mass, final population of nematodes and number of eggs per gram of root, not differing from the resistant control treatment (hybrid rootstock Guardião), with a reproduction factor less than 1, showing potential to be used as a resistant rootstock to M. javanica. Joá-bravo species showed susceptibility to the root-knot nematode, with a FR>1, not differing from the susceptible tomato Santa Cruz Kada. These results confirm the resistance of wild species to nematode parasitism, which can prove the viability of use as possible alternative rootstocks, and reinforce the idea that more studies should be carried out aiming to provide more viable options for farmers and plantlet producers.


Nematology ◽  
2002 ◽  
Vol 4 (8) ◽  
pp. 891-898 ◽  
Author(s):  
Yuji Oka ◽  
Uri Yermiyahu

AbstractSuppressive effects of two composts, from cattle manure and grape marc, on the root-knot nematode Meloidogyne javanica were tested in pot and in vitro experiments. No root galls were found on tomato roots grown in soils containing 10 or 25% (v/v) cattle manure compost, and very few on those grown in 50% grape marc compost. Significant reductions in galling index were also found on tomato plants grown in soils containing lower concentrations of this compost. Chemical analysis of the composts and leachates from the soils showed that the cattle manure compost had higher electrical conductivity (EC) and higher concentrations of nitrogen, especially N–NH4, than the grape marc compost. Water extract of the cattle manure compost showed high nematicidal activity to the nematode juveniles and less activity toward the eggs in vitro. Water extract of the grape marc compost showed weaker nematicidal activity to the juveniles and eggs. Washing composted soils with excess water before nematode inoculation and tomato planting led to better plant growth, but the nematode-suppressive effect was decreased. These results suggest that high nitrogen concentrations, especially N–NH4, and high EC values contribute to the nematode suppressiveness of the composts.


2001 ◽  
Vol 91 (7) ◽  
pp. 687-693 ◽  
Author(s):  
E. Sharon ◽  
M. Bar-Eyal ◽  
I. Chet ◽  
A. Herrera-Estrella ◽  
O. Kleifeld ◽  
...  

The fungal biocontrol agent, Trichoderma harzianum, was evaluated for its potential to control the root-knot nematode Meloidogyne javanica. In greenhouse experiments, root galling was reduced and top fresh weight increased in nematode-infected tomatoes following soil pretreatment with Trichoderma peat-bran preparations. The use of a proteinase Prb1-transformed line (P-2) that contains multiple copies of this gene improved biocontrol activity in the greenhouse experiments compared with the nontransformed wild-type strain (WT). All the Trichoderma strains showed the ability to colonize M. javanica-separated eggs and second-stage juveniles (J2) in sterile in vitro assays, whereas P-2 also penetrated the egg masses. This protease-transformed line presented the same nematicidal and overall proteolytic activity as the WT in in vitro tests in which concentrated soil extracts from Trichoderma-treated soils immobilized the infective J2. However, the J2 immobilization and proteolytic activities of both P-2 and the WT were higher than those obtained with strain T-203. Characterization of the activity of all Trichoderma strains soil extracts on J2 showed that it was heat resistant and restricted to the low-molecular-weight fraction (less than 3 kDa). It is suggested that improved proteolytic activity of the antagonist may be important for the biological control of the nematodes.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
EL HASSAN MAYAD ◽  
KHADIJA BASAID ◽  
JAMES NICHOLAS FURZE ◽  
NIAMA HEIMEUR ◽  
BTISSAM SENHAJI ◽  
...  

Meloidogyne javanica is considered as the most damaging nematode of vegetables in Morocco. Eco-friendly bionematicides are urgently required for its control. In vitro experiments were carried out to assess the direct effect of bioproducts of Peganum harmala against M. javanica. The bioassay showed extracts to be nematotoxic. Aqueous extracts of P. harmala exhibited reversible nematostatic activity. The estimated ID50 of the most active product in methanolic extracts was 368ppm. HPLC-MS of the methanolic extract revealed that total content of major alkaloids of P. harmala was approximately 12.162±0.637mg/g. Harmine (8.514±0.521mg/g) is the dominant alkaloid. In conclusion, Peganum harmala has a reversible nematostatic activity on second stage juveniles of M. javanica. The effect of P. harmala is due to its possession of a high content of β-carboline alkaloids, which warrant further experimentation. Bioproducts from P. harmala should be exploited through formulations for management of the root knot nematode.


Nematology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Mohsen Ebrahimi ◽  
Amir Mousavi ◽  
Mohammad Kazem Souri ◽  
Navazolah Sahebani

Summary The root-knot nematode, Meloidogyne javanica, is the most damaging species of plant-parasitic nematodes in eggplant cultivation in Iran. We studied the effect of pistachio and date palm biochars, vermicompost and a mixture of each of these biochars with vermicompost on M. javanica. To investigate the effect of these organic materials on survival, hatching and attraction of the second-stage juvenile (J2) towards the root, bioassays were performed in the laboratory using extracts of organic material. Vermicompost extract increased J2 mortality and decreased hatching and the number of J2 attracted to the eggplant roots. However, either type of biochar alone or mixed with vermicompost did not cause J2 mortality, nor did they inhibit hatching and attraction of J2 towards the root. To determine the effect of organic matter on J2 invasion and reproduction, pot experiments were performed in a completely randomised design with four replications in the glasshouse. Vermicompost reduced the number of J2 that penetrated the roots, number of egg masses and the final population of M. javanica eggs and J2. The suppressing effect of vermicompost might be attributed to the release of toxic compounds such as ammonium and improved soil nutrient and plant growth, leading to plants more tolerant to nematode damage. Pistachio and date biochars alone or combined with vermicompost had no adverse effect on the nematode reproduction compared to non-treated soil. Both types of biochar reduced the suppressing effect of vermicompost, most probably due to the absorbance of suppressive compounds in vermicompost by the high surface area of the biochar.


Sign in / Sign up

Export Citation Format

Share Document