scholarly journals Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) against Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici

2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Nongthombam Olivia Devi ◽  
R. K. Tombisana Devi ◽  
Manashi Debbarma ◽  
Monika Hajong ◽  
Sushanti Thokchom

Abstract Background Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (FOL) is a serious disease that causes significant economic losses in tomato production. Seventeen endophytic Bacillus isolates from tomato roots of Meghalaya were tested for antagonistic and plant growth promotion activities. Dominating arbuscular mycorrhiza fungi (AMF) spores were isolated from the rhizosphere soils of tomato grown in Meghalaya. The effect of different combinations of AMF and endophytic Bacillus on Fusarium wilt severity and growth of tomato plant under pot and field conditions was studied. Results The endophytic Bacillus isolates ERBS51 and ERBS10 showed a maximum inhibition against FOL, with 58.43 and 55.68%, respectively, in a dual culture experiment. ERBS51 and ERBS10 were identified as Bacillus velezensis and Bacillus sp., respectively, based on 16s rRNA sequencing. Both isolates were found positive for iturin A, surfactin, bacillomycin D, protease, cellulase, pectinase, alpha-amylase, siderophore, ammonia production and ZnCO3 solubilization. Funneliformis mosseae and Glomus fasciculatum were the dominating AMF species in tomato rhizosphere of Meghalaya. The result of pot and field experiments revealed that out of all the treatments, combination of Funneliformis mosseae + Glomus fasciculatum + Bacillus velezensis + Bacillus sp. was shown to be the best in reducing the severity of Fusarium wilt to 77.44 and 66.74%, respectively. F. mosseae + G. fasciculatum + B. velezensis + Bacillus sp. also recorded the highest in most growth attributes and yield. Conclusions Endophytic Bacillus (B. velezensis and Bacillus sp.) and AMF (F. mosseae and G. fasciculatum) were safe and effective biocontrol agents against Fusarium wilt of tomato.

2021 ◽  
Vol 117 (1) ◽  
pp. 1
Author(s):  
Tavga Sulaiman RASHID ◽  
Sirwa Anwar QADIR ◽  
Hayman Kakakhan AWLA

<p>Fusarium wilt of tomato plants caused by<em> Fusarium oxysporum </em>Schlecht. emend. Snyder &amp; Hansen and<em> Fusarium solani</em> (Mart.) Sacc. are serious problem limiting tomato production worldwide. Biological control has emerged as one of the most promising alternatives to chemical fungicides. The biological control capability of a <em>T. harzianum </em>isolate against <em>F. solani</em> and <em>F. oxysporum</em> has been investigated. It inhibited colony growth of two <em>Fusarium</em> species by more than 80 % in dual culture tests. Results of greenhouse experiments revealed that disease severity in the tomato plants co-inoculated with <em>T. harzianum</em> was significantly lower than plants only infected with the <em>Fusarium</em> pathogens. Tomato plants inoculated with the antagonistic <em>T. harzianum</em> isolate, showed enhanced peroxidase and polyphenol oxidase activities in greenhouse experiments and increased resistance to <em>F. solani</em> and <em>F. oxysporum</em>. The <em>T. harzianum</em> isolate indirectly affected the <em>Fusarium </em>pathogens by enhancing plant defence.</p>


2021 ◽  
Vol 15 (1) ◽  
pp. 10-20
Author(s):  
Tsegaye Mekuria Ayele ◽  
Guesh Desta Gebremariam ◽  
Subban Patharajan

Introduction: Tomato production in Ethiopia is challenged by many pests and diseases. Fusarium wilt is one of the most important diseases of tomato affecting its productivity. Methods: Tomato tissue and soil samples were collected from tomato farmlands around Aksum town to isolate and identify pathogenic Fusarium species and Trichoderma species with biocontrol efficacy. Samples were processed in the Aksum University Biotechnology laboratory following standard procedures. Results and Discussion: Eight Fusarium and five Trichoderma isolates were obtained. Six of the Fusarium isolates were identified as Fusarium oxysporum, whereas the remaining two were Fusarium equiseti and Fusarium circinatum. Detached leaf bioassay of the F. oxysporum on tomato leaves showed leaf lesion on the tomato variety, Melka oda. The isolated Trichoderma strains were screened for biocontrol potential against virulent F. oxysporum in vitro. The Trichoderma isolate showing the highest biocontrol efficacy against the virulent Fusarium was morphologically identified as Trichoderma viride. in vitro F. oxysporum-T. viride dual culture assay demonstrated that T. viride inhibits the growth of F. oxysporum f.sp. lycopersici with 76.94% growth inhibition. Conclusion: Fusarium oxysporum is prevalent in tomato growing farmlands covered in this study. T. viride identified in this study is an effective biocontrol agent for the identified F. oxysporum fsp. lycopersici in vitro.


2019 ◽  
Author(s):  
Xiuyan Yang ◽  
Huanyong Li ◽  
Lei Jiang ◽  
Xiaoqian Tang ◽  
Xiaowei Liu ◽  
...  

Abstract In this study, Pyrus betulaefolia Bunge seedlings were used to investigate the effects of an arbuscular mycorrhiza fungus (AMF; Funneliformis mosseae) on plant-growth characteristics, root morphology, salt tolerance, and ion distribution under saline-alkaline stress. An indoor pot experiment was conducted in which seedlings were inoculated with Funneliformis mosseae under treatments of four different concentrations of Na2CO3 solution. The results show that AMF could establish symbiotic relations with the P. betulaefolia root system under Na2CO3 stress. Under the same Na2CO3 stress, AMF significantly increased the height growth and biomass accumulation of P. betulaefolia seedlings. AMF also promoted the root growth of P. betulaefolia seedlings. AMF inoculation significantly affected the absorption and distribution of K+ and Na+ in P. betulaefolia. The K/Na ratios in the roots and leaves of seedlings inoculated with AMF were higher than those of seedlings without inoculation. The results of this study show that inoculation with AMF had a positive effect on enhancing the saline-alkaline tolerance of P. betulaefolia, and root treatment of P. betulaefolia seedlings with Funneliformis mosseae has the potential for application in the development of saline-alkaline soil vegetation.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2053 ◽  
Author(s):  
Iván Montenegro ◽  
Alejandro Madrid ◽  
Mauricio Cuellar ◽  
Michael Seeger ◽  
Juan Alfaro ◽  
...  

Tomato crops can be affected by several infectious diseases produced by bacteria, fungi, and oomycetes. Four phytopathogens are of special concern because of the major economic losses they generate worldwide in tomato production; Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato, causative agents behind two highly destructive diseases, bacterial canker and bacterial speck, respectively; fungus Fusarium oxysporum f. sp. lycopersici that causes Fusarium Wilt, which strongly affects tomato crops; and finally, Phytophthora spp., which affect both potato and tomato crops. Polygodial (1), drimenol (2), isonordrimenone (3), and nordrimenone (4) were studied against these four phytopathogenic microorganisms. Among them, compound 1, obtained from Drimys winteri Forst, and synthetic compound 4 are shown here to have potent activity. Most promisingly, the results showed that compounds 1 and 4 affect Clavibacter michiganensis growth at minimal inhibitory concentrations (MIC) values of 16 and 32 µg/mL, respectively, and high antimycotic activity against Fusarium oxysporum and Phytophthora spp. with MIC of 64 µg/mL. The results of the present study suggest novel treatment alternatives with drimane compounds against bacterial and fungal plant pathogens.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1143 ◽  
Author(s):  
Florin-Daniel Lipșa ◽  
Elena-Laura Ursu ◽  
Cristian Ursu ◽  
Eugen Ulea ◽  
Ana Cazacu

Nanoparticles are implemented in different biotechnological fields, and there is interest in their use in plant biology. Nanotechnology can help overcome the persistent limitations of using conventional fungicides in the management of plant diseases, contributing to a safer environment. Hence, this study is focused on evaluating the behavior of nanoparticles on two different strains of Fusarium oxysporum, which have a wide-ranging occurrence in tomato production and account for important economic losses. Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen, adapted to any soil type, and it lives in different forms on organic materials. Gold–chitosan and carbon nanoparticles were suspended in potato dextrose agar growth media, and their antifungal activity was evaluated at 1, 3, 5, and 7 days after incubation by measuring the diameter of fungal colonies. The results showed that the nanoparticles have antifungal properties against F. oxysporum, the fungal colony growth diameter being reduced. Likewise, it was observed that the colony diameter was smaller when the nanoparticle concentration increased. However, in the case of one F. oxysporum strain, the highest nanoparticle concentration applied during the experiment’s execution was not able to completely inhibit fungal growth.


Agrotek ◽  
2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Antonius Suparno ◽  
Dwiana Wasgito Purnomo ◽  
Karyoto Sardi Amat

The research was conducted at Soroan, Ayamaru District, South Sorong, Papua. �The objective of the study was to observe the diversity of Arbuscular Mycorrhiza Fungi (AMF) that symbiosis with cultivated plants at the Ayamaru rock phosphates deposit. Based on the observation, there were four AMF associated with nine cultivated plants at the Ayamaru rock phosphates deposit, namely genus Glomus, Acaulospora, Sclerocystis and Gigaspora. Genus Glomus had the greatest diversity (13 types) followed by Acaulospora which comprised of seven types.� On the other hand, the diversity of genus Sclerocystis and Gigaspora only consisted of two types and one type, respectively.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 683
Author(s):  
Yang Cao ◽  
Wei Ding ◽  
Chang Liu

Seedling blight, caused by the fungus Fusarium oxysporum, significantly lowers rice production globally. Earlier reports have opined that endophytic bacteria strains could be possible biocontrol agents, but the mechanistic actions involved are still unclear. Therefore, this study aimed to isolate the endophytic bacteria with high inhibitory activity and elucidate its possible mechanisms for inducing resistance by metabolomics. The results showed that mdj-36 had the strongest in vitro pathogen inhibition of F. oxysporum, while mdj-34 displayed the lowest inhibitory activity identified as Bacillus velezensis strains. Metabolomic analyses demonstrated that B. velezensis mdj-36 growth medium could produce higher organic acids, terpenes, and diterpene than B. velezensis mdj-34. Further investigation revealed that ‘secondary bile acid biosynthesis’ and ‘glycerophospholipid metabolism’ pathways played essential roles in defense response towards F. oxysporum. This study’s findings provide a credible theoretical basis for the possible use of the B. velezensis strain against rice seedling blight.


BioTech ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 8
Author(s):  
Olalekan Olanrewaju Bakare ◽  
Arun Gokul ◽  
Marshall Keyster

Fusarium oxysporum remains one of the leading causes of economic losses and poor crop yields; its detection is strained due to its presentation in various morphological and physiological forms. This research work sought to identify novel biomarkers for the detection of Fusarium oxysporum using in silico approaches. Experimentally validated anti-Fusarium oxysporum antimicrobial peptides (AMPs) were used to construct a profile against Fusarium oxysporum. The performance and physicochemical parameters of these peptides were predicted. The gene for the Fusarium oxysporum receptor protein PR-1-like Protein, Fpr1, was identified and translated. The resulting protein model from the translation was then validated. The anti-Fusarium oxysporum AMPs and Fusarium oxysporum receptor protein 3-D structures were characterized, and their docking interaction analyses were carried out. The HMMER in silico tool identified novel anti-Fusarium oxysporum antimicrobial peptides with good performance in terms of accuracy, sensitivity, and specificity. These AMPs also displayed good physicochemical properties and bound with greater affinity to Fusarium oxysporum protein receptor PR-1-like Protein. The tendency of these AMPs to precisely detect Fusarium oxysporum PR-1-like Protein, Fpr1, would justify their use for the identification of the fungus. This study would enhance and facilitate the identification of Fusarium oxysporum to reduce problems associated with poor crop yield, economic losses, and decreased nutritional values of plants to keep up with the growing population.


Sign in / Sign up

Export Citation Format

Share Document