scholarly journals Three-dimensional simulator: training for beginners in endovascular embolization with liquid agents

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michal Matyjas ◽  
Marius Sauerbrey ◽  
Sebastian Wyschkon ◽  
Maximilian de Bucourt ◽  
Michael Scheel

Abstract Background To design a simulator for novices without prior experience in embolization with liquid agents such as n-Butyl cyanoacrylate (n-BCA) and to evaluate the simulator using surveys and post hoc video analysis. Materials and methods The simulator was created using computer-aided design software and three-dimensionally printed. Before an embolization, trainees completed questionnaires regarding their level of expertise and self-reported confidence level. The participants were shown an instruction video and each participant performed four embolizations on the simulator. Subsequently, the participants completed surveys on self-reported confidence level and assessed the simulator’s face and content validity. Results Five experts and twelve novices trained on the simulator. The experts were radiology residents and fellows with at least 5 years of work experience in interventional radiology. The novices were medical students and radiology residents without any previous experience with embolization. Based on the surveys, the experts assessed the simulator as very useful for embolization training. Performance, e.g. mean duration embolization between experts (mean ± standard deviation = 189 ± 42 s) and novices (mean ± standard deviation = 235 ± 66 s) were significantly different (p = .001). The overall simulation of the embolization process, simulated complications, and educational capabilities of the simulator were evaluated positively. In the novice group the self-reported confidence level significantly increased (p = .001). Conclusion The liquid embolization simulator proposed here is a suitable educational tool for training embolization procedures. It reduces the duration of embolization procedures and improves the confidence level of beginners in embolization.

2021 ◽  
Author(s):  
Michal Matyjas ◽  
Marius Sauerbrey ◽  
Michael Scheel

Abstract Background: To design the simulator for novices without prior experience in embolization with liquid agents such as n-Butyl cyanoacrylate (n-BCA) and to evaluate the simulator using surveys and post hoc video analysis. Materials and Methods: The simulator was created using computer-aided design software and three-dimensionally printed. Before an embolization, trainees had filled the questionnaires regarding their level of expertise and self-reported confidence level. The participants were divided into the novice or the expert groups, were shown an instruction video, and each performed four embolizations. Subsequently, they completed the surveys on self-reported confidence level and assessed the simulator’s face and content validities.Results: 5 experts and 12 novices trained on the simulator. The experts were radiology fellows with at least five years of work experience. The novices were medical students and radiology residents in postgraduate years one and three, without any previous experience with embolization. Based on the surveys, the experts assessed the simulator as very useful for embolization training. Performance, e.g. mean duration embolization between experts (mean ± standard deviation = 189 ± 42 seconds) and novices (mean ± standard deviation = 235 ± 66 seconds) were significantly different (p = .001). The embolization, simulated complications, and educational capabilities of the simulator were evaluated positively. The self-reported confidence level rose by a mean of over two points, using the 5-point Lickert scale, in the novice group (p < .001).Conclusion: The liquid embolization simulator is an educational tool, mimicking embolization. It reduces the duration of embolization and improves the confidence level of the novices significantly.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1744 ◽  
Author(s):  
Keunbada Son ◽  
Kyu-bok Lee

The purpose of this study was to evaluate the accuracy of dental three-dimensional (3D) scanners according to the types of teeth. A computer-aided design (CAD) reference model (CRM) was obtained by scanning the reference typodont model using a high-precision industrial scanner (Solutionix C500, MEDIT). In addition, a CAD test model (CTM) was obtained using seven types of dental 3D scanners (desktop scanners (E1 and DOF Freedom HD) and intraoral scanners (CS3500, CS3600, Trios2, Trios3, and i500)). The 3D inspection software (Geomagic control X, 3DSystems) was used to segment the CRM according to the types of teeth and to superimpose the CTM based on the segmented teeth. The 3D accuracy of the scanner was then analyzed according to the types of teeth. One-way analysis of variance (ANOVA) was used to compare the differences according to the types of teeth in statistical analysis, and the Tukey HSD test was used for post hoc testing (α = 0.05). Both desktop and intraoral scanners showed significant differences in accuracy according to the types of teeth (P < 0.001), and the accuracy of intraoral scanners tended to get worse from anterior to posterior. Therefore, when scanning a complete arch using an intraoral scanner, the clinician should consider the tendency for the accuracy to decrease from anterior to posterior.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2020 ◽  
Vol 174 ◽  
pp. 01048
Author(s):  
Elena Kassikhina ◽  
Vladimir Pershin ◽  
Nina Rusakova

The existing structures of the steel sinking headgear and permanent headframe do not meet the requirements of resource saving (metal consumption and manpower input at installation), and the present methods of the headframe designing do not fully reflect recent possibilities of applying of the advanced information technologies. Technical level of the modern software makes it possible for designers to set up multiple numerical experiments to create a computer simulation that allows solving the problem without field and laboratory experiments, and therefore without special costs. In this regard, a mathematical simulation has been developed and based on it, software to select cross-sections of multi- purpose steel headframe elements and to calculate proper weight of its metal structures depending on the characteristics and hoisting equipment. A headframe drawing is displayed, as the results of the software work, including list of elements, obtained optimal hoisting equipment in accordance with the initial data. The software allows speeding up graphic work and reducing manpower input on calculations and paper work. The software allows developing a three-dimensional image of the structure and its functional blocks, based on the obtained initial parameters, as well as developing control software for units with numerical control (NC) in order to manufacture multi-purpose headframes.


2015 ◽  
Vol 35 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Hu Qiao ◽  
Rong Mo ◽  
Ying Xiang

Purpose – The purpose of this paper is to establish an adaptive assembly, to realize the adaptive changing of the models and to improve the flexibility and reliability of assembly change. For a three-dimensional (3D) computer-aided design (CAD) assembly in a changing process, there are two practical problems. One is delivering parameters’ information not smoothly. The other one is to easily destroy an assembly structure. Design/methodology/approach – The paper establishes associated parameters design structure matrix of related parts, and predicts possible propagation paths of the parameters. Based on the predicted path, structured storage is made for the affected parameters, tolerance range and the calculation relations. The study combines structured path information and all constrained assemblies to build the adaptive assembly, proposes an adaptive change algorithm for assembly changing and discusses the extendibility of the adaptive assembly. Findings – The approach would improve the flexibility and reliability of assembly change and be applied to different CAD platform. Practical implications – The examples illustrate the construction and adaptive behavior of the assembly and verify the feasibility and reasonability of the adaptive assembly in practical application. Originality/value – The adaptive assembly model proposed in the paper is an original method to assembly change. And compared with other methods, good results have been obtained.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


Author(s):  
B K A Ngoi ◽  
L E N Lim ◽  
S S G Lee ◽  
S W Lye

This paper proposes the construction of an energy envelope that can be used to advantage with the energy barrier method to analyse the natural resting aspect of engineering parts destined for automatic assembly. Unlike the energy barrier method, the energy envelope does not require any visualization of the projection of the energy barrier on the aspect of interest. The energy envelope is the three-dimensional topology of the changes in height of the centroid, as the part attempts changes of aspect. The paper describes how it may be computed in a CAD (computer aided design) solid modeller. The results of applying the energy envelope to prisms of square and cylindrical cross-sections are the same as those predicted by the energy barrier method. When extended to the analysis of a rectangular prism, the results were consistent with Boothroyd's dynamic solution and Boothroyd's experimental data. This conclusion is encouraging as there is no irrefutable evidence that the energy barrier method may be applied to the analysis of the rectangular prism.


Sign in / Sign up

Export Citation Format

Share Document