scholarly journals State description of cyber-physical energy systems

2020 ◽  
Vol 3 (S1) ◽  
Author(s):  
Marcel Klaes ◽  
Anand Narayan ◽  
Amit Dilip Patil ◽  
Jonas Haack ◽  
Martin Lindner ◽  
...  

Abstract The integration of ICT into power systems has increased the interdependencies between the two systems. The operation of power system depends on several ICT-enabled grid services which manifest the interdependencies. ENTSO-E system state classification is a tool that is widely used by operators to determine the current operational state of the power system. However, it does not adequately describe the impact of ICT disturbances on the operation of the power system. Despite their interconnections, the operational states of both systems have been described separately so far. This paper bridges the well-established ENTSO-E systems state classification with an ICT system state classification, forming a new model considering the state classification of the ICT-enabled grid services. The model is developed by first identifying the ICT-enabled services, remedial actions and the respective performance requirements that are required by the power system. Then the states of these services are specified based on the supporting ICT system. The resulting joint state description shows how performance degradation of ICT-enabled services (introduced by disturbances) can affect the operation of the interconnected power system. Two case studies of such ICT-enabled services, namely state estimation and on-load tap changer control, are investigated in terms of how their operational states affect the states of the power system. A third case study highlights the interdependencies that exist between the services. These case studies demonstrate the interdependencies that exist between power and ICT systems in modern cyber-physical energy systems, thus highlighting the usage of a unified system state description.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1717
Author(s):  
Camilo Andrés Ordóñez ◽  
Antonio Gómez-Expósito ◽  
José María Maza-Ortega

This paper reviews the basics of series compensation in transmission systems through a literature survey. The benefits that this technology brings to enhance the steady state and dynamic operation of power systems are analyzed. The review outlines the evolution of the series compensation technologies, from mechanically operated switches to line- and self-commutated power electronic devices, covering control issues, different applications, practical realizations, and case studies. Finally, the paper closes with the major challenges that this technology will face in the near future to achieve a fully decarbonized power system.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3310 ◽  
Author(s):  
Ignacio Blanco ◽  
Daniela Guericke ◽  
Anders Andersen ◽  
Henrik Madsen

In countries with an extended use of district heating (DH), the integrated operation of DH and power systems can increase the flexibility of the power system, achieving a higher integration of renewable energy sources (RES). DH operators can not only provide flexibility to the power system by acting on the electricity market, but also profit from the situation to lower the overall system cost. However, the operational planning and bidding includes several uncertain components at the time of planning: electricity prices as well as heat and power production from RES. In this publication, we propose a planning method based on stochastic programming that supports DH operators by scheduling the production and creating bids for the day-ahead and balancing electricity markets. We apply our solution approach to a real case study in Denmark and perform an extensive analysis of the production and trading behavior of the DH system. The analysis provides insights on system costs, how DH system can provide regulating power, and the impact of RES on the planning.


1999 ◽  
Vol 23 (1B) ◽  
pp. 117-127
Author(s):  
R. Lykins ◽  
M. Ramalingam ◽  
B. Donovan ◽  
E. Durkin ◽  
J. Beam

A computerized analytical program is being developed to help investigate the impact of power system requirements on aircraft performance. The program has an user interface that operates in MS-EXCEL, linking several subsystems analysis programs for execution and data transfer in the power systems analysis. The program presently includes an encoded propulsion engine cycle code, which allows the inspection of power extraction effects on engine performance. To validate the results of the encoded engine program, a study was conducted to investigate the separate effects of shaft power extraction and pneumatic bleed. The selected engine cycle was that for a standard tactical fighter, with a flight condition of varied altitude (sea level to 40,000 ft) and constant Mach Number (0.9). As expected the resultant data showed that the engine performance was more sensitive to pneumatic bleed than to shaft power extraction. The paper’s efficiency comparisons between shaft power and bleed air power helps indicate the higher efficiency for the power system of a more-electric type aircraft. Present efforts on the analytical interface are to incorporate a fuel thermal management analysis capability.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2268 ◽  
Author(s):  
Dong-Hee Yoon ◽  
Sang-Kyun Kang ◽  
Minseong Kim ◽  
Youngsun Han

We present a novel architecture of parallel contingency analysis that accelerates massive power flow computation using cloud computing. It leverages cloud computing to investigate huge power systems of various and potential contingencies. Contingency analysis is undertaken to assess the impact of failure of power system components; thus, extensive contingency analysis is required to ensure that power systems operate safely and reliably. Since many calculations are required to analyze possible contingencies under various conditions, the computation time of contingency analysis increases tremendously if either the power system is large or cascading outage analysis is needed. We also introduce a task management optimization to minimize load imbalances between computing resources while reducing communication and synchronization overheads. Our experiment shows that the proposed architecture exhibits a performance improvement of up to 35.32× on 256 cores in the contingency analysis of a real power system, i.e., KEPCO2015 (the Korean power system), by using a cloud computing system. According to our analysis of the task execution behaviors, we confirmed that the performance can be enhanced further by employing additional computing resources.


2020 ◽  
Vol 10 (17) ◽  
pp. 5964 ◽  
Author(s):  
Tej Krishna Shrestha ◽  
Rajesh Karki

Renewable energy resources like wind generation are being rapidly integrated into modern power systems. Energy storage systems (ESS) are being viewed as a game-changer for renewable integration due to their ability to absorb the variability and uncertainty arising from the wind generation. While abundant literature is available on system adequacy and operational reliability evaluation, operational adequacy studies considering wind and energy storage have received very little attention, despite their elevated significance. This work presents a novel framework that integrates wind power and energy storage models to a bulk power system model to sequentially evaluate the operational adequacy in the operational mission time. The analytical models are developed using a dynamic system state probability evaluation approach by incorporating a system state probability estimation technique, wind power probability distribution, state enumeration, state transition matrix, and time series analysis in order to quantify the operational adequacy of a bulk power system integrated with wind power and ESS. The loss of load probability (LOLP) is used as the operational adequacy index to quantify the spatio-temporal variation in risk resulting from the generation and load variations, their distribution on the network structure, and the operational strategies of the integrated ESS. The proposed framework is aimed to serve as a guideline for operational planning, thereby simplifying the decision-making process for system operators while considering resources like wind and energy storage facilities. The methodology is applied to a test system to quantify the reliability and economic benefits accrued from different operational strategies of energy storage in response to wind generation and other operational objectives in different system scenarios.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3998
Author(s):  
Sergio Fuentes ◽  
Roberto Villafafila-Robles ◽  
Eduardo Lerner

Energy transitions’ trend towards sustainable systems has prompted energy systems to shift from being fossil-fuel-based to rely on renewable energy. These transitions have led the power system to occupy the center of modern infrastructures, so assuring its security has become a priority for policy makers. This work presents a tool based on a multidimensional index, the Power System Security Index (PSIx), for the evaluation of policies affecting the security of the supply of electrical energy. The developed frame is applied to the current power system of Argentina, and it is compared to the system in year 2002. Availability of resources and infrastructure are the strengths of the country, while economic, governability, and research, development and innovation spheres leave room for improvement. The further incorporation of more economies to the study would substantially enrich the statistical analysis of the results.


2014 ◽  
Vol 672-674 ◽  
pp. 227-232
Author(s):  
Xu Zhi Luo ◽  
Hai Feng Li ◽  
Hua Dong Sun ◽  
An Si Wang ◽  
De Zhi Chen

With the fast development of the wind power, security constraints of power systems have become the bottleneck of the acceptable capacity for wind power. The underdamping oscillation modes of the inter-area is an important aspect of the constraints. In this paper, an equivalent model of a power system with wind plants has been established, and the impact of the integration of the large-scale wind power on the inter-area oscillation modes has been studied based on the frequency-domain and time-domain simulations. The results indicate that the damping of inter-area oscillation mode can be enhanced by the replacement of synchronous generators (SGs) with the wind generators. The enhancing degree is up to the participation value of the SGs replaced. The conclusion has been verified by the actual system example of Xinjiang-Northwest grid. It can provide a reference for system programming and operation.


Author(s):  
W Edge ◽  
R Partridge ◽  
E Maxeiner

The next generation of large surface combatants will feature a number of challenging hurdles with regards to performance, complexity and capability whilst being mindful of tomorrow’s fiscal pressures. Over the past two decades, new warship programmes have focussed on more complex, multi-role capabilities necessitating more adaptable mission and platform systems. With tomorrow’s vessels facing a service life between 35-50 years the selected power systems need to be sympathetic of today’s requirements as well as through life technology insertion for tomorrow’s needs. To facilitate this, a number of tomorrow’s warships are looking to adopt an all-electric architecture making use of developing energy storage technologies and more power dense prime movers. Whilst this in itself is no revelation, the impact that electric weapons and sensors have on an electrical power system, as well as the added costs incurred through provision of electrical margins, means it becomes imperative that design experience, lessons learnt, and evolving technologies are all considered during the concept design phase. Electrification of warships has been commonplace since the early 1990s and in-service experiences on platforms with Integrated Power Systems (IPS) are now informing the requirement set for their replacement vessels. The DDG1000 Destroyer as an example, at sea since 2013, has yielded some valuable insights in areas of design optimisation and resilience that can benefit future combatant types. These experiences and the proven products on board these vessels will be augmented by new technologies and configured as part of new architectures to service the new types of loads that accompany the deployment of high energy weapons and sensors. Meeting these demands in an affordable, efficient, resilient and reliable manner will be key to ensuring the future platform’s success and longevity. This paper aims to visit the key in-service experiences of today’s all electric ships whilst considering core aspects of future ‘second generation’ all electric ship design. This will include the need for power system ‘granularity’; investigating the building blocks of power generation that make up these complex systems, whilst analysing the maturity of their constituent parts and the enabling technologies that make these systems possible.


2019 ◽  
Vol 114 ◽  
pp. 05007 ◽  
Author(s):  
Felix Byk ◽  
Yana Frolova ◽  
Ludmila Myshkina

The existing centralized power supply system has the alternative due to distributed generation. By certain conditions distributed cogeneration allows to increase the reliability and quality of power supply and to reduce the cost of electricity for consumers. Therefore, a lot of energy-intensive consumers switched to their own power supply systems, as it turned out to be a competitive technical solution. The total gasification of the country’s regions and the presence of domestic manufacturers of gas turbine and gas piston power plants accelerated this process. Nowadays local power systems are emerging with cogeneration plants are the main source of heat and electricity there. The feasibility justification of the kind and type of generation is determined by many factors, including circuit-mode parameters in the local power system and adjacent network. Local power systems based on the principles of self-balance are proposed to name as energy cells. The integration of energy cells with regional power system increases the technical and economic effectiveness of power supply system for consumers. The proposed power systems transition leads to certain systemic effects. Received effects are depending on functions of distributed generation. This paper explores the impact of scheme and mode factor on the technical effects.


Sign in / Sign up

Export Citation Format

Share Document