scholarly journals Stabilization and optimization of host-microbe-environment interactions as a potential reason for the behavior of natal philopatry

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ting-bei Bo ◽  
Kevin D. Kohl

AbstractMany animals engage in a behavior known as natal philopatry, where after sexual maturity they return to their own birthplaces for subsequent reproduction. There are many proposed ultimate factors that may underlie the evolution of natal philopatry, such as genetic optimization, suitable living conditions, and friendly neighbors, which can improve the survival rates of offspring. However, here we propose that a key factor that has been overlooked could be the colonization of gut microbiota during early life and the effects these microorganisms have on host performance and fitness. In addition to the bacteria transmitted from the mother to offspring, microbes from the surrounding environment also account for a large proportion of the developing gut microbiome. While it was long believed that microbial species all have global distributions, we now know that there are substantial geographic differences and dispersal limitations to environmental microbes. The establishment of gut microbiota during early life has enormous impacts on animal development, including energy metabolism, training of the immune system, and cognitive development. Moreover, these microbial effects scale to influence animal performance and fitness, raising the possibility for natural selection to act on the integrated combination of gut microbial communities and host genetics (i.e. the holobiont). Therefore, in this paper, we propose a hypothesis: that optimization of host-microbe-environment interactions represents a potentially important yet overlooked reason for natal philopatry. Microbiota obtained by natal philopatry could help animals adapt to the environment and improve the survival rates of their young. We propose future directions to test these ideas, and the implications that this hypothesis has for our understanding of host-microbe interactions.

2018 ◽  
Vol 36 (15_suppl) ◽  
pp. e15006-e15006 ◽  
Author(s):  
Alex Stevenson ◽  
Alessio Panzica ◽  
Amy Holt ◽  
Delphine Laute Caly ◽  
Anna Ettore ◽  
...  

Author(s):  
Simon M Dittami ◽  
Enrique Arboleda ◽  
Jean-Christophe Auguet ◽  
Arite Bigalke ◽  
Enora Briand ◽  
...  

Host-microbe interactions play crucial roles in marine ecosystems, but we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota, living together in a stable relationship, form the holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences with comparisons to terrestrial sciences where appropriate. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g. the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. The most significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This will be crucial to decipher the roles of marine holobionts in biogeochemical cycles, but also developing concrete applications of the holobiont concept e.g. to increase yield or disease resistance in aquacultures or to protect and restore marine ecosystems through management projects.


2019 ◽  
Author(s):  
Simon M Dittami ◽  
Enrique Arboleda ◽  
Jean-Christophe Auguet ◽  
Arite Bigalke ◽  
Enora Briand ◽  
...  

Host-microbe interactions play crucial roles in marine ecosystems, but we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota, living together in a stable relationship, form the holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences with comparisons to terrestrial sciences where appropriate. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g. the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. The most significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This will be crucial to decipher the roles of marine holobionts in biogeochemical cycles, but also developing concrete applications of the holobiont concept e.g. to increase yield or disease resistance in aquacultures or to protect and restore marine ecosystems through management projects.


2019 ◽  
Vol 11 (3) ◽  
pp. 616-629 ◽  
Author(s):  
Sara C Di Rienzi ◽  
Robert A Britton

ABSTRACT The consumption of sugar has become central to the Western diet. Cost and health concerns associated with sucrose spurred the development and consumption of other sugars and sweeteners, with the average American consuming 10 times more sugar than 100 y ago. In this review, we discuss how gut microbes are affected by changes in the consumption of sugars and other sweeteners through transcriptional, abundance, and genetic adaptations. We propose that these adaptations result in microbes taking on different metabolic, ecological, and genetic profiles along the intestinal tract. We suggest novel approaches to assess the consequences of these changes on host–microbe interactions to determine the safety of novel sugars and sweeteners.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Bailey C. E. Peck ◽  
Michael T. Shanahan ◽  
Ajeet P. Singh ◽  
Praveen Sethupathy

The mammalian intestinal epithelial stem cell (IESC) niche is comprised of diverse epithelial, immune, and stromal cells, which together respond to environmental changes within the lumen and exert coordinated regulation of IESC behavior. There is growing appreciation for the role of the gut microbiota in modulating intestinal proliferation and differentiation, as well as other aspects of intestinal physiology. In this review, we evaluate the diverse roles of known niche cells in responding to gut microbiota and supporting IESCs. Furthermore, we discuss the potential mechanisms by which microbiota may exert their influence on niche cells and possibly on IESCs directly. Finally, we present an overview of the benefits and limitations of available tools to study niche-microbe interactions and provide our recommendations regarding their use and standardization. The study of host-microbe interactions in the gut is a rapidly growing field, and the IESC niche is at the forefront of host-microbe activity to control nutrient absorption, endocrine signaling, energy homeostasis, immune response, and systemic health.


2018 ◽  
Vol 11 (4) ◽  
pp. 98 ◽  
Author(s):  
Bahtiyar Yilmaz ◽  
Hai Li

Iron (Fe) is a highly ample metal on planet earth (~35% of the Earth’s mass) and is particularly essential for most life forms, including from bacteria to mammals. Nonetheless, iron deficiency is highly prevalent in developing countries, and oral administration of this metal is so far the most effective treatment for human beings. Notably, the excessive amount of unabsorbed iron leave unappreciated side effects at the highly interactive host–microbe interface of the human gastrointestinal tract. Recent advances in elucidating the molecular basis of interactions between iron and gut microbiota shed new light(s) on the health and pathogenesis of intestinal inflammatory diseases. We here aim to present the dynamic modulation of intestinal microbiota by iron availability, and conversely, the influence on dietary iron absorption in the gut. The central part of this review is intended to summarize our current understanding about the effects of luminal iron on host–microbe interactions in the context of human health and disease.


2018 ◽  
Vol 6 (3) ◽  
pp. 56 ◽  
Author(s):  
Majda Dzidic ◽  
Alba Boix-Amorós ◽  
Marta Selma-Royo ◽  
Alex Mira ◽  
Maria Collado

Gut microbiota colonization is a complex, dynamic, and step-wise process that is in constant development during the first years of life. This microbial settlement occurs in parallel with the maturation of the immune system, and alterations during this period, due to environmental and host factors, are considered to be potential determinants of health-outcomes later in life. Given that host–microbe interactions are mediated by the immune system response, it is important to understand the close relationship between immunity and the microbiota during birth, lactation, and early infancy. This work summarizes the evidence to date on early gut microbiota colonization, and how it influences the maturation of the infant immune system and health during the first 1000 days of life. This review will also address the influence of perinatal antibiotic intake and the importance of delivery mode and breastfeeding for an appropriate development of gut immunity.


2017 ◽  
Vol 474 (11) ◽  
pp. 1823-1836 ◽  
Author(s):  
Elizabeth Thursby ◽  
Nathalie Juge

The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host–microbe interactions.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10911
Author(s):  
Simon M. Dittami ◽  
Enrique Arboleda ◽  
Jean-Christophe Auguet ◽  
Arite Bigalke ◽  
Enora Briand ◽  
...  

Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.


mBio ◽  
2021 ◽  
Author(s):  
A. Marra ◽  
M. A. Hanson ◽  
S. Kondo ◽  
B. Erkosar ◽  
B. Lemaitre

This study advances current knowledge in the field of host-microbe interactions by demonstrating that the two families of immune effectors, antimicrobial peptides and lysozymes, actively regulate the gut microbiota composition and abundance. Consequences of the loss of these antimicrobial peptides and lysozymes are exacerbated during aging, and their loss contributes to increased microbiota abundance and shifted composition in old flies.


Sign in / Sign up

Export Citation Format

Share Document