scholarly journals Gut Microbiota and Iron: The Crucial Actors in Health and Disease

2018 ◽  
Vol 11 (4) ◽  
pp. 98 ◽  
Author(s):  
Bahtiyar Yilmaz ◽  
Hai Li

Iron (Fe) is a highly ample metal on planet earth (~35% of the Earth’s mass) and is particularly essential for most life forms, including from bacteria to mammals. Nonetheless, iron deficiency is highly prevalent in developing countries, and oral administration of this metal is so far the most effective treatment for human beings. Notably, the excessive amount of unabsorbed iron leave unappreciated side effects at the highly interactive host–microbe interface of the human gastrointestinal tract. Recent advances in elucidating the molecular basis of interactions between iron and gut microbiota shed new light(s) on the health and pathogenesis of intestinal inflammatory diseases. We here aim to present the dynamic modulation of intestinal microbiota by iron availability, and conversely, the influence on dietary iron absorption in the gut. The central part of this review is intended to summarize our current understanding about the effects of luminal iron on host–microbe interactions in the context of human health and disease.

2017 ◽  
Vol 474 (11) ◽  
pp. 1823-1836 ◽  
Author(s):  
Elizabeth Thursby ◽  
Nathalie Juge

The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host–microbe interactions.


Anaerobe ◽  
2017 ◽  
Vol 44 ◽  
pp. 3-12 ◽  
Author(s):  
Julius Z.H. von Martels ◽  
Mehdi Sadaghian Sadabad ◽  
Arno R. Bourgonje ◽  
Tjasso Blokzijl ◽  
Gerard Dijkstra ◽  
...  

Parasitology ◽  
2019 ◽  
Vol 146 (9) ◽  
pp. 1109-1115 ◽  
Author(s):  
Robert P. Hirt

AbstractMicrobial parasites adapted to thrive at mammalian mucosal surfaces have evolved multiple times from phylogenetically distant lineages into various extracellular and intracellular life styles. Their symbiotic relationships can range from commensalism to parasitism and more recently some host–parasites interactions are thought to have evolved into mutualistic associations too. It is increasingly appreciated that this diversity of symbiotic outcomes is the product of a complex network of parasites–microbiota–host interactions. Refinement and broader use of DNA based detection techniques are providing increasing evidence of how common some mucosal microbial parasites are and their host range, with some species being able to swap hosts, including from farm and pet animals to humans. A selection of examples will illustrate the zoonotic potential for a number of microbial parasites and how some species can be either disruptive or beneficial nodes in the complex networks of host–microbe interactions disrupting or maintaining mucosal homoeostasis. It will be argued that mucosal microbial parasitic diversity will represent an important resource to help us dissect through comparative studies the role of host–microbe interactions in both human health and disease.


BMC Genomics ◽  
2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Musfiqur Sazal ◽  
Kalai Mathee ◽  
Daniel Ruiz-Perez ◽  
Trevor Cickovski ◽  
Giri Narasimhan

Abstract Background Microbe-microbe and host-microbe interactions in a microbiome play a vital role in both health and disease. However, the structure of the microbial community and the colonization patterns are highly complex to infer even under controlled wet laboratory conditions. In this study, we investigate what information, if any, can be provided by a Bayesian Network (BN) about a microbial community. Unlike the previously proposed Co-occurrence Networks (CoNs), BNs are based on conditional dependencies and can help in revealing complex associations. Results In this paper, we propose a way of combining a BN and a CoN to construct a signed Bayesian Network (sBN). We report a surprising association between directed edges in signed BNs and known colonization orders. Conclusions BNs are powerful tools for community analysis and extracting influences and colonization patterns, even though the analysis only uses an abundance matrix with no temporal information. We conclude that directed edges in sBNs when combined with negative correlations are consistent with and strongly suggestive of colonization order.


2018 ◽  
Vol 36 (15_suppl) ◽  
pp. e15006-e15006 ◽  
Author(s):  
Alex Stevenson ◽  
Alessio Panzica ◽  
Amy Holt ◽  
Delphine Laute Caly ◽  
Anna Ettore ◽  
...  

2017 ◽  
Vol 35 (1-2) ◽  
pp. 139-147 ◽  
Author(s):  
Miloslav Kverka ◽  
Helena Tlaskalová-Hogenová

In humans, the gut microbiota forms a complex ecosystem consisting of a vast number of bacteria, Archaea, fungi and viruses. It represents a major stimulus to the development of the immune system and many other physiological functions, so that it may shape the individual's susceptibility to infectious and immune-mediated diseases. The emergence of new ‘-omics' methods recently revolutionized the way we study the host-microbe interactions, but they also raised new questions and issues. In this review, we discuss the impact of these new data on the current and future therapies for chronic inflammatory diseases. We also outline the major conceptual, technical and interpretational issues that recently led to some misleading conclusions and discuss in brief the current research directions in the field.


Author(s):  
Musfiqur Sazal ◽  
Kalai Mathee ◽  
Daniel Ruiz-Perez ◽  
Trevor Cickovski ◽  
Giri Narasimhan

AbstractBackgroundMicrobe-microbe and host-microbe interactions in a microbiome play a vital role in both health and disease. However, the structure of the microbial community and the colonization patterns are highly complex to infer even under controlled wet laboratory conditions. In this study, we investigate what information, if any, can be provided by a Bayesian Network (BN) about a microbial community. Unlike the previously proposed Co-occurrence Networks (CoNs), BNs are based on conditional dependencies and can help in revealing complex associations.ResultsIn this paper, we propose a way of combining a BN and a CoN to construct a signed Bayesian Network (sBN). We report a surprising association between directed edges in signed BNs and known colonization orders.ConclusionsBNs are powerful tools for community analysis and extracting influences and colonization patterns, even though the analysis only uses an abundance matrix with no temporal information. We conclude that directed edges in sBNs when combined with negative correlations are consistent with and strongly suggestive of colonization order.


2019 ◽  
Vol 11 (3) ◽  
pp. 616-629 ◽  
Author(s):  
Sara C Di Rienzi ◽  
Robert A Britton

ABSTRACT The consumption of sugar has become central to the Western diet. Cost and health concerns associated with sucrose spurred the development and consumption of other sugars and sweeteners, with the average American consuming 10 times more sugar than 100 y ago. In this review, we discuss how gut microbes are affected by changes in the consumption of sugars and other sweeteners through transcriptional, abundance, and genetic adaptations. We propose that these adaptations result in microbes taking on different metabolic, ecological, and genetic profiles along the intestinal tract. We suggest novel approaches to assess the consequences of these changes on host–microbe interactions to determine the safety of novel sugars and sweeteners.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
L. Caetano M. Antunes ◽  
Julie A. K. McDonald ◽  
Kathleen Schroeter ◽  
Christian Carlucci ◽  
Rosana B. R. Ferreira ◽  
...  

ABSTRACTThe mammalian gut contains a complex assembly of commensal microbes termed microbiota. Although much has been learned about the role of these microbes in health, the mechanisms underlying these functions are ill defined. We have recently shown that the mammalian gut contains thousands of small molecules, most of which are currently unidentified. Therefore, we hypothesized that these molecules function as chemical cues used by hosts and microbes during their interactions in health and disease. Thus, a search was initiated to identify molecules produced by the microbiota that are sensed by pathogens. We found that a secreted molecule produced by clostridia acts as a strong repressor ofSalmonellavirulence, obliterating expression of theSalmonellapathogenicity island 1 as well as host cell invasion. It has been known for decades that the microbiota protects its hosts from invading pathogens, and these data suggest that chemical sensing may be involved in this phenomenon. Further investigations should reveal the exact biological role of this molecule as well as its therapeutic potential.IMPORTANCEMicrobes can communicate through the production and sensing of small molecules. Within the complex ecosystem formed by commensal microbes living in and on the human body, it is likely that these molecular messages are used extensively during the interactions between different microbial species as well as with host cells. Deciphering such a molecular dialect will be fundamental to our understanding of host-microbe interactions in health and disease and may prove useful for the design of new therapeutic strategies that target these mechanisms of communication.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Vincenzo Monda ◽  
Ines Villano ◽  
Antonietta Messina ◽  
Anna Valenzano ◽  
Teresa Esposito ◽  
...  

The human gastrointestinal tract (GIT) is inhabited by a wide cluster of microorganisms that play protective, structural, and metabolic functions for the intestinal mucosa. Gut microbiota is involved in the barrier functions and in the maintenance of its homeostasis. It provides nutrients, participates in the signaling network, regulates the epithelial development, and affects the immune system. Considering the microbiota ability to respond to homeostatic and physiological changes, some researchers proposed that it can be seen as an endocrine organ. Evidence suggests that different factors can determine changes in the gut microbiota. These changes can be both quantitative and qualitative resulting in variations of the composition and metabolic activity of the gut microbiota which, in turn, can affect health and different disease processes. Recent studies suggest that exercise can enhance the number of beneficial microbial species, enrich the microflora diversity, and improve the development of commensal bacteria. All these effects are beneficial for the host, improving its health status. In this paper, we intend to shed some light over the recent knowledge of the role played by exercise as an environmental factor in determining changes in microbial composition and how these effects could provide benefits to health and disease prevention.


Sign in / Sign up

Export Citation Format

Share Document