scholarly journals Nomenclatural issues concerning cultured yeasts and other fungi: why it is important to avoid unneeded name changes

IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrey Yurkov ◽  
Artur Alves ◽  
Feng-Yan Bai ◽  
Kyria Boundy-Mills ◽  
Pietro Buzzini ◽  
...  

ABSTRACTThe unambiguous application of fungal names is important to communicate scientific findings. Names are critical for (clinical) diagnostics, legal compliance, and regulatory controls, such as biosafety, food security, quarantine regulations, and industrial applications. Consequently, the stability of the taxonomic system and the traceability of nomenclatural changes is crucial for a broad range of users and taxonomists. The unambiguous application of names is assured by the preservation of nomenclatural history and the physical organisms representing a name. Fungi are extremely diverse in terms of ecology, lifestyle, and methods of study. Predominantly unicellular fungi known as yeasts are usually investigated as living cultures. Methods to characterize yeasts include physiological (growth) tests and experiments to induce a sexual morph; both methods require viable cultures. Thus, the preservation and availability of viable reference cultures are important, and cultures representing reference material are cited in species descriptions. Historical surveys revealed drawbacks and inconsistencies between past practices and modern requirements as stated in the International Code of Nomenclature for Algae, Fungi, and Plants (ICNafp). Improper typification of yeasts is a common problem, resulting in a large number invalid yeast species names. With this opinion letter, we address the problem that culturable microorganisms, notably some fungi and algae, require specific provisions under the ICNafp. We use yeasts as a prominent example of fungi known from cultures. But viable type material is important not only for yeasts, but also for other cultivable Fungi that are characterized by particular morphological structures (a specific type of spores), growth properties, and secondary metabolites. We summarize potential proposals which, in our opinion, will improve the stability of fungal names, in particular by protecting those names for which the reference material can be traced back to the original isolate.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Wonhee Kim ◽  
Sangmin Suh

For several decades, disturbance observers (DOs) have been widely utilized to enhance tracking performance by reducing external disturbances in different industrial applications. However, although a DO is a verified control structure, a conventional DO does not guarantee stability. This paper proposes a stability-guaranteed design method, while maintaining the DO structure. The proposed design method uses a linear matrix inequality (LMI)-based H∞ control because the LMI-based control guarantees the stability of closed loop systems. However, applying the DO design to the LMI framework is not trivial because there are two control targets, whereas the standard LMI stabilizes a single control target. In this study, the problem is first resolved by building a single fictitious model because the two models are serial and can be considered as a single model from the Q-filter point of view. Using the proposed design framework, all-stabilizing Q filters are calculated. In addition, for the stability and robustness of the DO, two metrics are proposed to quantify the stability and robustness and combined into a single unified index to satisfy both metrics. Based on an application example, it is verified that the proposed method is effective, with a performance improvement of 10.8%.


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Catherine Aime ◽  
Andrew N. Miller ◽  
Takayuki Aoki ◽  
Konstanze Bensch ◽  
Lei Cai ◽  
...  

AbstractIt is now a decade since The International Commission on the Taxonomy of Fungi (ICTF) produced an overview of requirements and best practices for describing a new fungal species. In the meantime the International Code of Nomenclature for algae, fungi, and plants (ICNafp) has changed from its former name (the International Code of Botanical Nomenclature) and introduced new formal requirements for valid publication of species scientific names, including the separation of provisions specific to Fungi and organisms treated as fungi in a new Chapter F. Equally transformative have been changes in the data collection, data dissemination, and analytical tools available to mycologists. This paper provides an updated and expanded discussion of current publication requirements along with best practices for the description of new fungal species and publication of new names and for improving accessibility of their associated metadata that have developed over the last 10 years. Additionally, we provide: (1) model papers for different fungal groups and circumstances; (2) a checklist to simplify meeting (i) the requirements of the ICNafp to ensure the effective, valid and legitimate publication of names of new taxa, and (ii) minimally accepted standards for description; and, (3) templates for preparing standardized species descriptions.


1986 ◽  
Vol 32 (10) ◽  
pp. 1901-1905 ◽  
Author(s):  
J C Koedam ◽  
G M Steentjes ◽  
S Buitenhuis ◽  
E Schmidt ◽  
R Klauke

Abstract We produced three batches of a human-serum-based enzyme reference material (ERM) enriched with human aspartate aminotransferase (EC 2.6.1.1), alanine aminotransferase (EC 2.6.1.2), creatine kinase (EC 2.7.3.2), and lactate dehydrogenase (EC 1.1.1.27). The added enzymes were not exhaustively purified; thus the final ERMs contained some enzymes as contaminants, of which only glutamate dehydrogenase activity might interfere. The stability during storage and after reconstitution was good. The commutability of the four enzymes in the three ERM batches was also good, except when German or Scandinavian methods for aminotransferases were involved. The temperature-conversion factors for the ERMs were equivalent to those for patients' sera. Reactivation after reconstitution was complete within 5 min and was independent of the temperature of the reconstitution fluid. We believe that these secondary ERMs will aid in the transfer of accuracy between well-defined reference methods and daily working methods so that clinical enzymology results will become more comparable from laboratory to laboratory.


2005 ◽  
Vol 04 (01) ◽  
pp. 117-126
Author(s):  
N. L. MA ◽  
P. WU

Using density functional theory, we predicted the solution structure of the hydrolyzed 3–aminopropyltriethoxysilane (h–APS), which is a silane coupling agent commonly used in many industrial applications. We have located five stable minima on the potential energy surface of h–APS in which four of them are "neutral", and the remaining one is zwitterionic (dipolar) in nature. Our calculations suggested that the stability of the most stable form of h–APS in water (denoted as II_N) arose from strong intramolecular OH ⋯ N hydrogen bond. The least stable form is the zwitterionic form (I_ZW), which is estimated to be over 90 kJ mol -1 less stable than II_N. The factors governing the relative stabilities of different forms are discussed.


Author(s):  
Dirk Erpenbeck ◽  
Merrick Ekins ◽  
Nicole Enghuber ◽  
John N.A. Hooper ◽  
Helmut Lehnert ◽  
...  

Sponge species are infamously difficult to identify for non-experts due to their high morphological plasticity and the paucity of informative morphological characters. The use of molecular techniques certainly helps with species identification, but unfortunately it requires prior reference sequences. Holotypes constitute the best reference material for species identification, however their usage in molecular systematics and taxonomy is scarce and frequently not even attempted, mostly due to their antiquity and preservation history. Here we provide case studies in which we demonstrate the importance of using holotype material to answer phylogenetic and taxonomic questions. We also demonstrate the possibility of sequencing DNA fragments out of century-old holotypes. Furthermore we propose the deposition of DNA sequences in conjunction with new species descriptions.


2018 ◽  
Vol 41 (8) ◽  
pp. 2352-2364 ◽  
Author(s):  
Arif Iqbal ◽  
Girish Kumar Singh

Owing to the superior properties and stable operation, the Permanent Magnet Synchronous Motor (PMSM) is preferably used in wide industrial applications. But, the stability of motor is found to be dependent on its initial operating condition, showing the chaotic characteristic. Therefore, this paper addresses the chaos control of PMSM by developing four simple but effective controllers, which are mathematically designed by using the principle of Lyapunov’s method for asymptotic global stability. A comparative performance assessment has been carried out for the developed controllers in terms of settling time and peak over shoot. Furthermore, the concept of conventional proportional-integration type controller has been extended to develop two more controllers for chaos control of PMSM. Numerical simulation has been carried out in Matlab environment for performance evaluation of developed controllers. The obtained analytical results have been validated through experimental implementation in real time environment on Multisim/Ultiboard platform.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 983
Author(s):  
Wahhida Latip ◽  
Victor Feizal Knight ◽  
Ong Keat Khim ◽  
Noor Azilah Mohd Kasim ◽  
Wan Md Zin Wan Yunus ◽  
...  

Immobilization is a method for making an enzyme more robust in the environment, especially in terms of its stability and reusability. A mutant phosphotriesterase (YT PTE) isolated from Pseudomonas dimunita has been reported to have high proficiency in hydrolyzing the Sp and Rp-enantiomers of organophosphate chromophoric analogs and therefore has great potential as a decontamination agent and biosensor. This work aims to investigate the feasibility of using Fuller’s earth (FE) as a YT PTE immobilization support and characterize its biochemical features after immobilization. The immobilized YT PTE was found to show improvement in thermal stability with a half-life of 24 h compared to that of the free enzyme, which was only 8 h. The stability of the immobilized YT PTE allowed storage for up to 4 months and reuse for up to 6 times. The immobilized YT PTE showed high tolerance against all tested metal ions, Tween 40 and 80 surfactants and inorganic solvents. These findings showed that the immobilized YT PTE became more robust for use especially with regards to its stability and reusability. These features would enhance the future applicability of this enzyme as a decontamination agent and its use in other suitable industrial applications.


2020 ◽  
pp. 187-187
Author(s):  
Adnan Qamar ◽  
Attique Arshad ◽  
Zahid Anwar ◽  
Rabia Shaukat ◽  
Muhammad Amjad ◽  
...  

With advancement of nanoscience, ?nanofluids? are becoming quite popular among thermal engineers. High thermal conductivity, relatively less settling speed, and higher surface area of nanoparticles are a few key promoting properties. The last two decades have seen dramatic progress towards using nanoparticles in industrial applications. However, the stability and rheological characteristics of prepared nanofluids have serious effects on their transport characteristics, but unfortunately, this has not found proper attention from researchers. In this study, stability and rheological characteristics of ZnO nanoparticles within deionized water, ethylene glycol, and their blends have been extensively tested. Stability was observed using UV-vis spectroscopy, while the viscosity was measured with the help of a rheometer. The data was collected with 0.011-0.044 wt. % loading of nanoparticles, while experiments were conducted within 15-55oC temperature range. Better stability was recorded when nanofluids were prepared with pure ethylene glycol. Experiments showed that the viscosity increased with particle loading, whereas the effect of surfactants appeared to be insignificant. Research results were used to assess predictions of different viscosity models. Experimental data was overpredicted by Einstein, Brinkman, and Batchelor?s models.


2010 ◽  
Vol 154-155 ◽  
pp. 794-805 ◽  
Author(s):  
Yao Jang Lin ◽  
Yan Cherng Lin ◽  
A Cheng Wang ◽  
Der An Wang ◽  
Han Ming Chow

This study investigates the feasibility of EDM for processing ZrO2 and Al2O3 of non-conductive ceramics, which were covered by an assisted conductive material, an adherent copper foil, on the workpiece surface. The conductive material adhered on the surface of the non-conductive ceramics would induce a series of electrical discharges between the tool electrode and the workpiece in the initial stage of the EDM process. Thus, the pyrolytic carbon that cracked from kerosene was formed and deposited on the machined surface to maintain the progress of EDM. In this work, the essential EDM machining parameters were varied to determine the effects on material removal rate (MRR), electrode wear rate (EWR), and surface roughness. The stability of EDM progress and the surface integrities of ZrO2 and Al2O3 machined by EDM were also investigated. The aim of this study is to explore the feasibility and development of an applicable process for processing non-conductive ceramics through EDM. Moreover, the exploitation of this work can be applied to industrial applications and used to develop machining techniques for non-conductive ceramics.


Author(s):  
Urara Satake ◽  
Toshiyuki Enomoto ◽  
Teppei Miyagawa ◽  
Takuya Ohsumi

Abstract The demand for improving the image quality of cameras has increased significantly, especially in industrial applications, such as broadcasting, on-vehicle, security, factory automation, and medicine. Surface of glass lenses, which is a key component of cameras, is formed and finished by polishing using small tools. However, the existing small tool polishing technologies exhibit serious problems including an unstable removal rate with the accumulated polishing time. In concrete, low removal rate at the beginning of the polishing process and sudden decrease in the removal rate during the polishing process significantly deteriorate stability of the removal rate. To improve the stability of the removal rate, we proposed a vibration-assisted polishing method using newly developed polishing pads with titanium dioxide particles in the previous work. Polishing experiments on glass lenses confirmed that the variation in the removal rate was suppressed by the developed polishing method; however, the reason for the improvement, in concrete, the relation between the vibration of polishing pressure and the stability of the removal rate remains unknown. In this study, we investigated and clarified the effect of the vibration of polishing pressure on the surface conditions of polishing pads, which strongly affected removal rate.


Sign in / Sign up

Export Citation Format

Share Document