scholarly journals Correlation between age, sex, and severity of Coronavirus disease-19 based on chest computed tomography severity scoring system

Author(s):  
Shimaa Farghaly ◽  
Marwa Makboul

Abstract Background Coronavirus disease 2019 (COVID-19) is the most recent global health emergency; early diagnosis of COVID-19 is very important for rapid clinical interventions and patient isolation; chest computed tomography (CT) plays an important role in screening, diagnosis, and evaluating the progress of the disease. According to the results of different studies, due to high severity of the disease, clinicians should be aware of the different potential risk factors associated with the fatal outcome, so chest CT severity scoring system was designed for semi-quantitative assessment of the severity of lung disease in COVID-19 patients, ranking the pulmonary involvement on 25 points severity scale according to extent of lung abnormalities; this study aims to evaluate retrospectively the relationship between age and severity of COVID-19 in both sexes based on chest CT severity scoring system. Results Age group C (40–49 year) was the commonest age group that was affected by COVID-19 by 21.3%, while the least affected group was group F (≥ 70 years) by only 6.4%. As regards COVID-RADS classification, COVID-RADS-3 was the most commonly presented at both sexes in all different age groups. Total CT severity lung score had a positive strong significant correlation with the age of the patient (r = 0.64, P < 0.001). Also, a positive strong significant correlation was observed between CT severity lung score and age in both males and females (r = 0.59, P < 0.001) and (r = 0.69, P < 0.001) respectively. Conclusion We concluded that age can be considered as a significant risk factor for the severity of COVID-19 in both sexes. Also, CT can be used as a significant diagnostic tool for the diagnosis of COVID-19 and evaluation of the progression and severity of the disease.

Author(s):  
Maha Ibrahim Metwally ◽  
Mohammad Abd Alkhalik Basha ◽  
Mohamed M. A. Zaitoun ◽  
Housseini Mohamed Abdalla ◽  
Hanaa Abu Elazayem Nofal ◽  
...  

Abstract Background Since the announcement of COVID-19 as a pandemic infection, several studies have been performed to discuss the clinical picture, laboratory finding, and imaging features of this disease. The aim of this study is to demarcate the imaging features of novel coronavirus infected pneumonia (NCIP) in different age groups and outline the relation between radiological aspect, including CT severity, and clinical aspect, including age, oxygen saturation, and fatal outcome. We implemented a prospective observational study enrolled 299 laboratory-confirmed COVID-19 patients (169 males and 130 females; age range = 2–91 years; mean age = 38.4 ± 17.2). All patients were submitted to chest CT with multi-planar reconstruction. The imaging features of NCIP in different age groups were described. The relations between CT severity and age, oxygen saturation, and fatal outcome were evaluated. Results The most predominant CT features were bilateral (75.4%), posterior (66.3%), pleural-based (93.5%), lower lobe involvement (89.8%), and ground-glass opacity (94.7%). ROC curve analysis revealed that the optimal cutoff age that was highly exposed to moderate and severe stages of NCIP was 38 years old (AUC = 0.77, p < 0.001). NCIP was noted in 42.6% below 40-year-old age group compared to 84% above 40-year-old age group. The CT severity was significantly related to age and fatal outcome (p < 0.001). Anterior, centrilobular, hilar, apical, and middle lobe involvements had a significant relation to below 90% oxygen saturation. A significant negative correlation was found between CT severity and oxygen saturation (r = − 0.49, p < 0.001). Crazy-paving pattern, anterior aspect, hilar, centrilobular involvement, and moderate and severe stages had a statistically significant relation to higher mortality. Conclusion The current study confirmed the value of CT as a prognostic predictor in NCIP through demonstration of the strong relation between CT severity and age, oxygen saturation, and the fatal outcome. In the era of COVID-19 pandemic, this study is considered to be an extension to other studies discussing chest CT features of COVID-19 in different age groups with demarcation of the relation of chest CT severity to different pattern and distribution of NCIP, age, oxygen saturation, and mortality rate.


2020 ◽  
Vol 245 (13) ◽  
pp. 1096-1103 ◽  
Author(s):  
Molly D Wong ◽  
Theresa Thai ◽  
Yuhua Li ◽  
Hong Liu

The rapid and dramatic increase in confirmed cases of COVID-19 has led to a global pandemic. Early detection and containment are currently the most effective methods for controlling the outbreak. A positive diagnosis is determined by laboratory real-time reverse transcriptase polymerase chain reaction (rRT-PCR) testing, but the use of chest computed tomography (CT) has also been indicated as an important tool for detection and management of the disease. Numerous studies reviewed in this paper largely concur in their findings that the early hallmarks of COVID-19 infection are ground-glass opacities (GGOs), often with a bilateral and peripheral lung distribution. In addition, most studies demonstrated similar CT findings related to the progression of the disease, starting with GGOs in early disease, followed by the development of crazy paving in middle stages and finally increasing consolidation in the later stages of the disease. Studies have reported a low rate of misdiagnosis by chest CT, as well as a high rate of misdiagnosis by the rRT-PCR tests. Specifically, chest CT provides more accurate results in the early stages of COVID-19, when it is critical to begin treatment as well as isolate the patient to avoid the spread of the virus. While rRT-PCR will probably remain the definitive final test for COVID-19, until it is more readily available and can consistently provide higher sensitivity, the use of chest CT for early stage detection has proven valuable in avoiding misdiagnosis as well as monitoring the progression of the disease. With the understanding of the role of chest CT, researchers are beginning to apply deep learning and other algorithms to differentiate between COVID-19 and non-COVID-19 CT scans, determine the severity of the disease to guide the course of treatment, and investigate numerous additional COVID-19 applications. Impact statement The impact of the COVID-19 pandemic has been worldwide, and clinicians and researchers around the world have been working to develop effective and efficient methods for early detection as well as monitoring of the disease progression. This minireview compiles the various agency and expert recommendations, along with results from studies published in numerous countries, in an effort to facilitate the research in imaging technology development to benefit the detection and monitoring of COVID-19. To the best of our knowledge, this is the first review paper on the topic, and it provides a brief, yet comprehensive analysis.


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1023
Author(s):  
Temitope Emmanuel Komolafe ◽  
John Agbo ◽  
Ebenezer Obaloluwa Olaniyi ◽  
Kayode Komolafe ◽  
Xiaodong Yang

Background: The pooled prevalence of chest computed tomography (CT) abnormalities and other detailed analysis related to patients’ biodata like gender and different age groups have not been previously described for patients with coronavirus disease 2019 (COVID-19), thus necessitating this study. Objectives: To perform a meta-analysis to evaluate the diagnostic performance of chest CT, common CT morphological abnormalities, disease prevalence, biodata information, and gender prevalence of patients. Methods: Studies were identified by searching PubMed and Science Direct libraries from 1 January 2020 to 30 April 2020. Pooled CT positive rate of COVID-19 and RT-PCR, CT-imaging features, history of exposure, and biodata information were estimated using the quality effect (QE) model. Results: Out of 36 studies included, the sensitivity was 89% (95% CI: 80–96%) and 98% (95% CI: 90–100%) for chest CT and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The pooled prevalence across lesion distribution were 72% (95% CI: 62–80%), 92% (95% CI: 84–97%) for lung lobe, 88% (95% CI: 81–93%) for patients with history of exposure, and 91% (95% CI: 85–96%) for patients with all categories of symptoms. Seventy-six percent (95% CI: 67–83%) had age distribution across four age groups, while the pooled prevalence was higher in the male with 54% (95% CI: 50–57%) and 46% (95% CI: 43–50%) in the female. Conclusions: The sensitivity of RT-PCR was higher than chest CT, and disease prevalence appears relatively higher in the elderly and males than children and females, respectively.


2019 ◽  
Vol 2 (1) ◽  
pp. e000034
Author(s):  
Andrew Phelps ◽  
Cynthia Tan ◽  
Saveen Ahuja ◽  
Dean Kolnick ◽  
Jesse Courtier ◽  
...  

PurposeFor infants with prenatally detected lung lesions, a chest CT is performed prior to surgery. The chest CT is performed as close to the surgery date as possible, because it is presumed that the visualization of lung fissures would be poor in the immediate neonatal setting. However, this presumption has never been formally studied. The purpose of this study is to assess differences in lung fissure visualization on chest CT in different infant age groups.MethodsThis was a retrospective study of clinically indicated chest CT approved by the institutional review board performed in infants of different ages. The visibility of pleural fissures was subjectively assessed by three pediatric radiologists who were blinded to age group.ResultsIn the 0–2 months age group, 80% of all fissure segments were visible versus 92% in the 5–6 months group (p=0.04) and 95% in the 7–9 months group (p=0.01).ConclusionsThe ability to visualize pleural fissures on CT increases with infant age. This observation should be taken into consideration when choosing the optimal timing of preoperative CT for asymptomatic congenital lung lesions.


2014 ◽  
Vol 4 ◽  
pp. 38 ◽  
Author(s):  
Lukas Ebner ◽  
Felix Knobloch ◽  
Adrian Huber ◽  
Julia Landau ◽  
Daniel Ott ◽  
...  

Objective: The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. Materials and Methods: 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. Results: Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. Conclusion: The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.


2021 ◽  
Vol 67 (11) ◽  
pp. 1531-1537
Author(s):  
Safiye Sanem Dereli Bulut ◽  
Zakir Sakci ◽  
Aslihan Semiz Oysu ◽  
Fatma Kulali ◽  
Mehmet Taha Avci ◽  
...  

Author(s):  
Максикова ◽  
Tatyana Maksikova ◽  
Бабанская ◽  
Evgeniya Babanskaya ◽  
Меньшикова ◽  
...  

Smoking is a significant risk factor of chronic noncommunicable diseases. Smoking prevalence is variable in different populations. A study of the prevalence of this risk factor allows to estimate its contribution to the development of cardiovascular pathology, to plan the necessary amount of medical care for people using tobacco, and to determine the effectiveness of prevention activities in the region. As a result of the study, smoking frequency in population of the Irkutsk region older 18years of age or over was established as 29.5%. The number of smokers increased with age, reaching maximum value of 38.6% in the group 30–39 years. Male smokers made maximum in the age group 30–39 years, women – in the age group of 18–19 years. The average age of smokers was 34 years, the one of nonsmokers – 43 years. The age difference was 9 years, and it was lower in the group of men than in the group of women (5 and 11 years, respectively). The number of the smoking men were 3 times larger, than women: 50.2% and 13.5%, respectively. Among persons with arterial hypertension, 22.1% were smoking with the maximum frequency of smoking in age groups from 20 to 49 years. These figures point to a considerable problem of smoking in the region.


2019 ◽  
Vol 56 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Darin B White ◽  
Megan J Hora ◽  
Sarah M Jenkins ◽  
Randolph S Marks ◽  
Yolanda I Garces ◽  
...  

Abstract OBJECTIVES The aim of this study is to evaluate the efficacy of chest computed tomography (CT) to predict the pathological stage of thymic epithelial tumours (TET) using the recently introduced tumour, node and metastasis (TNM) staging with comparison to the modified Masaoka staging. METHODS Preoperative chest CT examinations in cases of resected TET with sampled lymph nodes (2006–2016) were retrospectively reviewed by 2 thoracic radiologists and radiologically (r) staged using both staging systems. A thoracic pathologist reviewed all cases for the pathological (p) stage. Concordance between r-staging and p-staging was assessed by % agreement and unweighted kappa statistics. Associations between r-stage and p-stage with outcomes were assessed using the Cox proportional hazards regression. RESULTS Sixty patients with TET were included (47 thymomas, 12 thymic carcinomas and 1 atypical carcinoid tumour). Sixteen patients (26.7%) had received neoadjuvant therapy. Fifty-four patients (90.0%) had complete resection. The overall agreement between the r-stage and p-stage was 66.7% (κ = 0.46) for TNM staging and 46.7% (κ = 0.30) for modified Masaoka staging. Agreement between r-assessment and p-assessment of the T, N and M components of the TNM stage was 61.7% (κ = 0.28), 86.7% (κ = 0.48) and 98.3% (κ = 0.88), respectively. CT overstaged 12 patients (20.0%) for TNM staging and 12 patients (20.0%) for modified Masaoka staging and understaged 8 (13.3%) and 20 (33.3%) patients for TNM staging modified Masaoka staging, respectively. The r-TNM staging accuracy was lower for patients with neoadjuvant therapy (50.0% with vs 72.7% without). During a median follow-up of 2.6 years (range 0.1–10.5 years), 12 patients had metastases and/or recurrence; 11 patients died (4 of disease). The r-TNM stage and modified Masaoka stage were associated with overall survival and progression-free survival (P < 0.001). CONCLUSIONS Preoperative chest CT is able to accurately predict p-TNM stage in two-thirds of surgically resected TET, with an agreement between radiological staging and pathological staging superior to the modified Masaoka staging.


2020 ◽  
Vol 13 (3) ◽  
pp. 328-333 ◽  
Author(s):  
Rui Wang ◽  
Hong He ◽  
Cong Liao ◽  
Hongtao Hu ◽  
Chun Hu ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that first manifested in humans in Wuhan, Hubei Province, China, in December 2019, and has subsequently spread worldwide. Methods We conducted a retrospective, single-center case series of the seven maintenance hemodialysis (HD) patients infected with COVID-19 at Zhongnan Hospital of Wuhan University from 13 January to 7 April 2020 and a proactive search of potential cases by chest computed tomography (CT) scans. Results Of 202 HD patients, 7 (3.5%) were diagnosed with COVID-19. Five were diagnosed by reverse transcription polymerase chain reaction (RT-PCR) because of compatible symptoms, while two were diagnosed by RT-PCR as a result of screening 197 HD patients without respiratory symptoms by chest CT. Thirteen of 197 patients had positive chest CT features and, of these, 2 (15%) were confirmed to have COVID-19. In COVID-19 patients, the most common features at admission were fatigue, fever and diarrhea [5/7 (71%) had all these]. Common laboratory features included lymphocytopenia [6/7 (86%)], elevated lactate dehydrogenase [3/4 (75%)], D-dimer [5/6 (83%)], high-sensitivity C-reactive protein [4/4 (100%)] and procalcitonin [5/5 (100%)]. Chest CT showed bilateral patchy shadows or ground-glass opacity in the lungs of all patients. Four of seven (57%) received oxygen therapy, one (14%) received noninvasive and invasive mechanical ventilation, five (71%) received antiviral and antibacterial drugs, three (43%) recieved glucocorticoid therapy and one (14%) received continuous renal replacement therapy. As the last follow-up, four of the seven patients (57%) had been discharged and three patients were dead. Conclusions Chest CT may identify COVID-19 patients without clear symptoms, but the specificity is low. The mortality of COVID-19 patients on HD was high.


2018 ◽  
Vol 67 (suppl_1) ◽  
pp. S103-S109
Author(s):  
Harish Verma ◽  
Zubairu Iliyasu ◽  
Kehinde T Craig ◽  
Natalie A Molodecky ◽  
Utibeabasi Urua ◽  
...  

Abstract Background Kano state has been a protracted reservoir of poliovirus in Nigeria. Immunity trends have been monitored through seroprevalence surveys since 2011. The survey in 2015 was, in addition, intended to assess the impact of use of inactivated poliovirus vaccine (IPV). Methods It was a health facility based seroprevalence survey. Eligible children aged 6-9, 12-15 and 19-22 months of age brought to the paediatrics outpatient department of Murtala Mohammad Specialist Hospital between 19 October and 6 November 2015, were screened for eligibility. Eligible children were enrolled after parental consent, history taken, physical examination conducted, and a blood sample collected to test for neutralizing antibody titres against the three poliovirus serotypes. Results Overall, 365 results were available in the three age groups. In the 6-9-month-old age group, the seroprevalence was 73% (95% confidence interval [CI] 64-80%), 83% (95% CI 75-88%), and 66% (95% CI 57-73%) for serotypes 1, 2, and 3, respectively. In the 12-15- and 19-22-month-old age groups, seroprevalence was higher but still remained <90% across serotypes. Seroprevalence to serotypes 1 and 3 in 2015 was similar to 2014; however, for serotype 2 there was a significant improvement. IPV received in supplemental immunization activities was found to be a significant predictor of seropositivity among 6-9-month-old infants for serotypes 1 and 2. Conclusions Seroprevalence for serotypes 1 and 3 remains low (<80%) in 6-9-month-olds. This poses a significant risk for poliovirus spread if reintroduced into the population. Efforts to strengthen immunization coverage are imperative to secure and sustain high population immunity.


Sign in / Sign up

Export Citation Format

Share Document