scholarly journals Exploring the potential of using bioactive plant products in the management of Fusarium oxysporum f.sp. albedinis: the causal agent of Bayoud disease on date palm (Phoenix dactylifera L.)

Author(s):  
Eimad Dine Tariq Bouhlali ◽  
Mgal Derouich ◽  
Houria Ben-Amar ◽  
Reda Meziani ◽  
Adil Essarioui

Abstract Background “Bayoud” disease caused by Fusarium oxysporum f. sp. albedinis (Foa) poses a serious threat to date palm (Phoenix dactylifera L.) in Morocco. However, research studies performed to discover biological methods to control this disease remain limited. The present study has set objectives to determine antifungal activity of five plants extracts (Acacia cyanophylla, Cupressus atlantica, Eucalyptus torquata, Nerium oleander, and Schinus molle) against Foa and link this effect to their content in polyphenols and flavonoids as well as their antioxidant properties. Results Plant extracts showed significant differences (p < 0.05) regarding their antifungal activity. The extracts of E. torquata and C. atlantica showed the strongest antifungal effect resulting in the inhibition of mycelial growth, sporulation, and spore germination in a dose-dependent manner. In addition, there were significant differences among the examined plant extracts in respect to their total polyphenols (1.536–7.348 g GAE/100 g DW), flavonoids (0.986–5.759 g RE/100 g DW), and antioxidant properties measured by Trolox equivalent antioxidant capacity (TEAC) (7.47–38.97 mmol TE/100 g DW) and ferric-reducing antioxidant power (FRAP) assay (8.95–47.36 mmol TE/100 g DW). Moreover, the antifungal potential of plant extracts was found to be moderately to strongly correlated with their polyphenol and flavonoid contents as well as their antioxidant activity, implying that the effective inhibitory activity of these plant extracts is partly due to their richness in antioxidative secondary metabolites. Conclusion Our findings shed further light on plants as a-yet-untapped resource of bioactive compounds and constructed the foundation for the development of new biological approaches to best manage Bayoud disease.

Scientifica ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Eimad Dine Tariq Bouhlali ◽  
Mgal Derouich ◽  
Reda Meziani ◽  
Adil Essarioui

Date palm (Phoenix dactylifera L.) inflorescence rot caused by Mauginiella scaettae poses a serious threat to date palm in Morocco. The present study aims to determine the antifungal activity of five plant extracts against M. scaettae, including Acacia cyanophylla, Cupressus atlantica, Eucalyptus torquata, Nerium oleander, and Schinus molle and link this effect to their content in phenolics and flavonoids, as well as their antioxidant properties. Plant extracts exhibited significant discrepancies regarding their antifungal activity ( p < 0.05 ). The extracts of E. torquata and C. atlantica had the strongest and dose-dependent manner inhibitory effect against mycelial growth and spore germination. E. torquata and S. molle caused the greatest sporulation reductions of about 88.05% and 36.11%, respectively. In addition, there were significant differences among the examined plant extracts with respect to their total polyphenols (14.52–76.68 mg GAE/g DW), flavonoids (8.75–57.78 g RE/100 g DW), and antioxidant properties as measured by TEAC (74.77–391.23 mmol TE/g DW) and FRAP assays (87.18–474.04 mmol TE/g DW). Strong correlations were found between phenolic compounds and antioxidant activity suggesting that polyphenols play a key role in the observed antioxidant and antifungal activities.


Author(s):  
A. Mezouari ◽  
A. Makhloufi ◽  
K. Bendjima ◽  
L. Benlarbi ◽  
A. Boulanouar ◽  
...  

Bayoud caused by Fusarium oxysporum f.sp. albedinis (Foa), is the most destructive disease of the date palm (Phoenix dactylifera L.) in Morocco and Algeria and there is no effective control strategy. We found that although Foa isolates vary morphologically, Foa strains can be identified by species-specific primers. PCR analysis revealed that the strains that we isolated from infected date palm rachis were the Bayoud pathogen Foa. We used these strains to evaluate the antifungal activity of tar extracted from Acacia tortilis subsp. raddiana. The A. raddiana tar had a density of 1.15, a refraction index of 1.3850, a pH of 5.2 and a dried matter ratio of 48.75%. The A. raddiana tar effectively inhibited the growth of Foa in vitro with a minimum inhibitory concentration of 3 µg/ml.


Author(s):  
Hakima Belaidi ◽  
Fawzia Toumi-Benali ◽  
Ibrahim Elkhalil Benzohra

Background: This work has the objective to biocontrol the bayoud disease of date palm caused by the fungus Fusarium oxysporum f. sp. albedinis (Foa), is the major disease in Algerian palm groves of south western region. This in vivo biocontrol was done on date palm variety Deglet-Nour, using two antagonistic fungi species, Trichoderma harzianum and Aspergillus flavus.Methods: Twenty Foa isolates obtained from isolation of the spines carrying the typical symptoms of Bayoud disease were used. Two strains T. harzianum and A. flavus, were isolated from rhizosphere soils of the date palm trees. Using the greenhouse screening test, which was carried out on 3-4 month-old date palm seedlings at the rate of 5 ml of inoculum suspension.Result: A statistical analysis showed a significant (P less than 0.05), difference of Deglet-Nour seedlings reactions against Foa isolates and antagonistic fungi were observed. All date palm trees present susceptibility against Foa until the total mortality of seedlings. The biocontrol test showed that two antagonists showed different reaction, with the complete resistance for seedlings treated by T. harzianum with the mortality rate (rm%) reduced at 100%, while, the second antagonist A. flavus reduced the rm% at 25%. We can apply of these antagonistic fungi to protect our groves contaminated by Bayoud disease and also contain this susceptible commercial variety.


Author(s):  
Hadi Shariati ◽  
Mohammad Hassanpour ◽  
Gholamreza Sharifzadeh ◽  
Asghar Zarban ◽  
Saeed Samarghandian ◽  
...  

Objective: The present study has been carried out to evaluate the diuretic and antioxidant properties of pine herb in an animal model. Materials and Methods: 45 adult male rats were randomly divided into nine groups including: groups I (the negative control), groups II (positive control, furosemide 10 mg/kg), groups III to VIII (treatment groups received 100, 200, 400 mg/kg of the aqueous extracts of bark and fruit) and group IX received the combination of aqueous extract of bark (100 mg/kg) and the fruit (100 mg/kg). The urine output, glomerular filtration rate (GFR), electrolytes, urea, and creatinine levels were evaluated . Furthermore, the phenolic content and antioxidant activity of both extracts were also assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and Folin–Ciocalteu methods. Results: The aqueous extracts of the pine bark and fruit increased the urinary output in a dose-dependent manner. The combination of the two extracts compared to the other extracts alone significantly increased the serum potassium level. This study also showed each extract increase creatinine clearance in a dose-dependent manner (p<0.01 and p<0.05). The increase of GFR in the combination group was not significant. The current data showed a significant increase in the total phenolic content in pine bark extract in compared with the fruit extract. Conclusion: The pine bark and fruit can be useful in the prevention and treatment of kidney stones due to the high antioxidant activity.


2021 ◽  
Vol 10 (4) ◽  
pp. 408-414
Author(s):  
Oluwaseun Ruth Olasehinde ◽  
Olakunle Bamikole Afolabi ◽  
Benjamin Olusola Omiyale ◽  
Oyindamola Adeniyi Olaoye

Introduction: Diabetes mellitus (DM) has been recognized as the seventh leading cause of global mortality; however, researchers seek alternative means to manage the menace. The current study sought to investigate antioxidant potentials, α-amylase, and α-glucosidase inhibitory activities of ethanolic extract of Moringa oleifera flower in vitro. Methods: Antioxidant properties of the extract were appraised by assessing its inhibition against 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH•), and hydrogen peroxide (H2O2) free radicals, as well as ferric reducing antioxidant power (FRAP), the antidiabetic activity was evaluated by α-amylase and α-glucosidase inhibition.Results: In this study, ethanolic extract of M. oleifera flower demonstrated a significant (P < 0.05) inhibition against DPPH free radical (43.57–83.56%) in a concentration-dependent manner, while FRAP (101.76 ± 1.63 mg/100 g), OH• scavenging ability (71.62 ± 0.95 mg/100 g), and H2O2 free radical scavenging capacity (15.33 ± 1.20 mg/100 g) were also observed. In the same manner, ethanolic extract of M. oleifera flower revealed a significant (P < 0.05) inhibition against α-amylase (IC50= 37.63 mg/mL) and α-glucosidase activities (IC50= 38.30 mg/mL) in the presence of their respective substrates in a concentration-dependent manner in comparison with acarbose. Conclusion: Ethanoic extract of M. oleifera flower could be useful as an alternative phytotherapy in the management of DM, having shown a strong antioxidative capacity and substantial inhibition against the activities of key enzymes involved in carbohydrate hydrolysis in vitro.


2020 ◽  
Vol 122 (10) ◽  
pp. 3029-3038
Author(s):  
Seok Shin Tan ◽  
Seok Tyug Tan ◽  
Chin Xuan Tan

PurposeSalak (Salacca zalacca) is an underutilised fruit. The bioactivities of this fruit have rarely been studied scientifically. Thus, the present study aimed to determine the antioxidant activity of extracts derived from the peel, fruit and kernel of the Salak fruit, as well as the hypoglycemic and anti-hypertensive properties of Salak peel extracts.Design/methodology/approachThe peel, fruit and kernel of the Salak were extracted using distilled water, methanol and ethanol. Antioxidant activities, angiotensin-converting enzyme (ACE) and alpha-amylase inhibition properties of the extracts were estimated via in vitro standard methods. Besides, the total phenolic content (TPC) and total flavonoid content (TFC) of the extracts were also determined in the present study. The antioxidant activities of different parts of Salak extracts were determined by ferric-reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) methods. Percent of radical scavenging properties were calculated via DPPH assay. The hypoglycemic and anti-hypertensive properties of Salak peel were evaluated using alpha-amylase inhibition and ACE assays, respectively.FindingsFruit extracts of Salak in methanol were found to exhibit the highest TPC (10.27 ± 0.12 mg GAE/g), TFC (11.04 ± 0.89 mg CE/g) and antioxidant properties amongst all samples whereby the TPC and TFC were strongly correlated with antioxidant activities. On the other hand, distilled water extracted Salak kernel showed to have the lowest TPC (0.53 ± 0.05 mg GAE/g), TFC (0.37 ± 0.01 mg CE/g) and antioxidant properties amongst all the Salak extracts. Peel extracts exhibit comparable antioxidant activities with fruit extracts in the current findings. In addition, peel extracts indicated some extend of ACE and alpha-amylase inhibition activities regardless of the solvents used. Methanol and ethanol peel extracts indicated no significant difference (p < 0.05) ACE (98%) and alpha-amylase (90%) inhibition activities. However, distilled water extracted Salak peel showed significantly lower ACE and alpha-amylase inhibition in comparison to methanol and ethanol peel extracts.Originality/valueThe present findings suggested that the fruit of Salak exhibits the highest antioxidant properties, followed by the peel and lastly, the kernel, which shows the lowest antioxidant properties amongst all the samples. The results also indicated that the peel extracts have ACE and alpha-amylase inhibition activities.


Sign in / Sign up

Export Citation Format

Share Document