Theory of microwave dielectric constant logging using the electromagnetic wave propagation method

Geophysics ◽  
1979 ◽  
Vol 44 (5) ◽  
pp. 969-986 ◽  
Author(s):  
R. (Bob) Freedman ◽  
John P. Vogiatzis

The composite dielectric constants of earth formations at microwave frequencies are strongly dependent on formation water saturations and relatively independent of water salinities. Therefore, microwave frequency dielectric constant logging offers an attractive new electromagnetic (EM) method of formation evaluation. The EM wave propagation method of dielectric constant logging attempts to deduce the dielectric properties of earth formations from phase shift and attenuation measurements of EM field, which have been propagated in the formation. A device which utilizes this method of well logging has been proposed by Calvert (1974) and Rau (1976) in two recent U.S. patents. We discuss the basic physics underlying the operation of a device of this type and describe the plane wave procedure discussed by these authors for relating the phase shift and attenuation measurements made by such a device to the formation dielectric properties. This procedure is suspect, since it is based on an unrealistic plane wave model which fails to treat the radiation field correctly and ignores the presence of a layer of mud cake which separates the antenna pad from the formation. To determine the errors likely to be inherent in using this procedure in practice, we consider several simple theoretical models of an EM wave propagation tool. Computer experiments performed on these theoretical models indicate that the apparent formation traveltimes obtained by using this procedure are semiquantitatively accurate with relative errors less than five percent in most cases. For our theoretical models, correction plots or departure curves are demonstrated which enable one to deduce the true formation traveltimes, given the apparent values and a knowledge of the dielectric properties and thickness of the mud cake. The problems which remain if this new method of logging is to attain its full potential (e.g., the accurate determination of formation fluid saturations) are discussed.

Geophysics ◽  
1980 ◽  
Vol 45 (10) ◽  
pp. 1530-1532 ◽  
Author(s):  
H. Pascal ◽  
D. Rankin

In the interesting paper by Freedman and Vogiatzis, the Schlumberger EPT dielectric well logging method is discussed. The authors pay particular attention to the analysis of the formation traveltime and calculate, for several realistic sources, the corrections to the values of the plane wave model used by Schlumberger.


2007 ◽  
Vol 124-126 ◽  
pp. 177-180
Author(s):  
Jang Sik Lee ◽  
Q.X. Jia

To investigate the anisotropic dielectric properties of layer-structured bismuth-based ferroelectrics along different crystal directions, we fabricate devices along different crystal orientations using highly c-axis oriented Bi3.25La0.75Ti3O12 (BLT) thin films on (001) LaAlO3 (LAO) substrates. Experimental results have shown that the dielectric properties of the BLT films are highly anisotropic along different crystal directions. The dielectric constants (1MHz at 300 K) are 358 and 160 along [100] and [110], respectively. Dielectric nonlinearity is also detected along these crystal directions. On the other hand, a much smaller dielectric constant and no detectable dielectric nonlinearity in a field range of 0-200 kV/cm are observed for films along [001] when c-axis oriented SRO is used as the bottom electrode.


1998 ◽  
Vol 541 ◽  
Author(s):  
Wontae Chang ◽  
James S. Horwitz ◽  
Won-Jeong Kim ◽  
Jeffrey M. Pond ◽  
Steven W. Kirchoefer ◽  
...  

AbstractSingle phase BaxSr1−xTiO3 (BST) films (∼0.5-7 μm thick) have been deposited onto single crystal substrates (MgO, LaAlO3, SrTiO3) by pulsed laser deposition. Silver interdigitated electrodes were deposited on top of the ferroelectric film. The room temperature capacitance and dielectric Q (1/tanδ) of the film have been measured as a function of electric field (≤80 kV/cm) at 1 - 20 GHz. The dielectric properties of the film are observed to strongly depend on substrate type and post-deposition processing. After annealing (≤1000° C), it was observed that the dielectric constant and % tuning decreased and the dielectric Q increased for films deposited onto MgO, and the opposite effect was observed for films deposited onto LaA1O3. Presumably, this change in dielectric properties is due to the changes in film stress. Very thin (∼50 Å) amorphous BST films were successfully used as a stress-relief layer for the subsequently deposited crystalline BST (∼5000 Å) films to maximize % tuning and dielectric Q. Films have been deposited from stoichiometric targets and targets that have excess Ba and Sr. The additional Ba and Sr has been added to the target to compensate for deficiencies in Ba and Sr observed in the deposited BST (x=0.5) films. Films deposited from compensated targets have higher dielectric constants than films deposited from stoichiometric targets. Donor/acceptor dopants have also been added to the BST target (Mn, W, Fe ≤4 mol.%) to further improve the dielectric properties. The relationship between the dielectric constant, the dielectric Q, the change in dielectric constant with electric field is discussed.


1997 ◽  
Vol 12 (2) ◽  
pp. 526-530 ◽  
Author(s):  
G. L. Roberts ◽  
R. J. Cava ◽  
W. F. Peck ◽  
J. J. Krajewski

The results of measurements of dielectric constants, in the vicinity of ambient temperature, are presented for eight barium titanium niobium oxides (BaTi1+2nNb4O13+4n for n = 0, 1, 2, 3, 4; Ba3Ti4Nb4O21, Ba3Ti5Nb6O28, and Ba6Ti2Nb8O30) in polycrystalline ceramic form. The dielectric constants are in the range of 30 to 70. The results of dielectric measurements on solid solutions obtained by partial substitution of Ta for Nb are also reported. These substitutions do not dramatically increase the dielectric constants. One material, Ta-substituted Ba3Ti5Nb6O28, has a very low temperature coefficient of dielectric constant at K ≈ 45.


1986 ◽  
Vol 72 ◽  
Author(s):  
G. V. Chandrashekhar ◽  
M. W. Shafer

AbstractDielectric properties have been measured for a series of porous and fully densified silica glasses, prepared by the sol-gel technique starting from Si-methoxide or Si-fume. The results for the partially densified glasses do not show any preferred orientation for porosity. When fully densified (˜2.25 gms/cc) without any prior treatment of the gels, they have dielectric constants of ≥ 6.5 and loss factors of 0.002 at 1 MHz, compared to values of 3.8 and <0.001 for commercial fused silica. There is no corresponding anomaly in the d.c. resistivity. Elemental carbon present to the extent of 400–500 ppm is likely to be the main cause for this enhanced dielectric constant. Extensive cleaning of the gels prior to densification to remove this carbon were not completely successful pointing to the difficulty in preparing high purity, low dielectric constant glasses via the organic sol-gel route at least in the bulk form.


Geophysics ◽  
1981 ◽  
Vol 46 (3) ◽  
pp. 322-332 ◽  
Author(s):  
James N. Lange ◽  
Steven S. Shope

The application of electromagnetic (EM) techniques to well logging is initiated in an environment dominated by the properties of the drilling fluids. An impulse technique using nanosecond pulses is applied to a coaxial waveguide containing drilling fluids to measure the velocity (dielectric constant ε) and absorption (attenuation coefficient α) of EM impulses. It is the large difference in dielectric constants of water and oil which makes EM propagation techniques attractive for logging. Dielectric properties of some nondispersed drilling fluids (bentonite and attapulgite clays) are found to be largely dependent upon the volume of water present. Both bentonite and attapulgite clays exhibit the same range of dielectric constants (ε = 81 → 75) when the weight percent of clay is increased to 10 percent. In contrast, the microwave attenuations of these two clays are quite different, with that of the bentonite increasing at about 4 times the rate of the attapulgite suspensions. Microwave attenuation measured for a variety of commercial drilling fluids varies over a wide range, with the lignosulfonates the largest (91 dB/m) and oil inverts the smallest (3 dB/m). The oil inverts also have a small dielectric constant (ε = 3 → 6). Temperature dependence of the attenuation for these same drilling fluids is determined in the range from 23 °C to 45 °C to indicate their behavior under in situ conditions.


2009 ◽  
Vol 421-422 ◽  
pp. 69-72
Author(s):  
Jie Shen ◽  
Wen Chen ◽  
Jing Zhou ◽  
Jie Zhu ◽  
Qiong Lei

The relationship between the character of the B-site cation–oxygen bond and the microwave dielectric properties in perovskites dielectric materials was studied in this paper. The atomic net charge of CaTiO3 (CT) and Ca(Zn1/3Nb2/3)O3 (CZN) was calculated respectively. The calculating result implies that the covalency of B-O bonds in CZN is stronger than that in CT. This predicted that the dielectric constant and loss of the ceramics will decrease after CZN incorporated in CT. To confirme the prediction, (1-x)CT-xCZN microwave dielectric ceramics were prepared by solid state reaction method with ZnNb2O6 as precursor. The structure analysis in terms of tolerance factor gives an identical result as calculation. The microwave dielectric properties, such as dielectric constants, Q×f values and τf were studied as a function of composition. With x increasing from 0.2 to 0.8, the dielectric constant linearly decreases from 109 to 49.37, the Q×f value increases from 8,340 to 13,200 GHz, and τf decreases from 321 to -18 ppm/°C. The properties trends are consistent with the previous calculation results, and confirm the relationship between the character of B-O bond and dielectric properties.


1991 ◽  
Vol 227 ◽  
Author(s):  
D. Boese ◽  
S. Herminghaus ◽  
D. Y. Yoon ◽  
J. D. Swalen ◽  
J. F. Rabolt

ABSTRACTThin films of poly(p-phenylene biphenyltetracarboximide), prepared by thermal imidization of the precursor poly(amic acid) on substrates, have been investigated by optical waveguide, UV-visible, infrared (IR), and dielectric spectroscopies. The polyimide films exhibit an extraordinarily large anisotropy in the refractive indices with the in-plane index n║ = 1.852 and the out-of-plane index n┴ = 1.612 at 632.8 nm wavelength, indicating a strong preference of polymer chains to orient along the film plane. No discernible effect of the film thickness on this optical anisotropy is found in the range of ca. 0.4 μm to 7.8 μm in thickness. The frequency dispersion of the in-plane refractive index to 1.06 μm wavelength is consistent with the results calculated by the Lorentz-Lorenz equation from the UV-visible spectrum. The contribution from the entire IR range from 7000 to 200 cm,−1 computed by the Spitzer-Kleinmann dispersion relations from the measured spectra, adds ca. 0.07 to the in-plane refractive index n║. Approximately the same increase is assumed for the out-of-plane index n┴, based on the tilt-angle dependent IR results. Application of the Maxwell relation leads to the out-of-plane dielectric constant ε┴≃2.8 at ca. 1013 Hz, as compared with the measured value of ca. 3.0 at 106 Hz. Assuming this small difference to remain the same for the in-plane dielectric constants ε║, we obtain a a very large anisotropy in the dielectric properties of these polyimide films with the estimated in-plane dielectric constant ε║≃3.5 at ca. 1013 Hz, and ε.≃3.7 at 106 Hz.


2012 ◽  
Vol 496 ◽  
pp. 263-267
Author(s):  
Rui Li ◽  
Jian Zhong Pei ◽  
Yan Wei Li ◽  
Xin Shi ◽  
Qun Le Du

A novel all-polymeric material with high dielectric constant (k) has been developed by blending poly (vinylidene fluoride) (PVDF) with polyamide-6 (PA6). The dependence of the dielectric properties on frequency and polymer volume fraction was investigated. When the volume fraction of PA6 is 20%, the dielectric property is better than others. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. The XRD demonstrate that the PA6 and PVDF affect the crystalline behavior of each component. Furthermore, the stable dielectric constants of the blends could be tuned by adjusting the content of the polymers. The created high-k all-polymeric blends represent a novel type of material that are simple technology and easy to process, and is of relatively high dielectric constant, applications as flexible electronics.


2007 ◽  
Vol 336-338 ◽  
pp. 125-128 ◽  
Author(s):  
Zong Hui Zhou ◽  
Xin Cheng ◽  
Pi Yi Du ◽  
Jun Chang ◽  
Shi Feng Huang ◽  
...  

The phase composition of (1-x)BaO·xSrO·0.7TiO2·0.3Nb2O5 (BSTN) composite ceramics was analyzed by XRD, and the effect of Sr/Ba ratio on the dielectric properties of BSTN was investigated by impedance analyzer. The results showed that any sample with different x value contained two phases-the perovskite phase and the tungsten bronze phase. The dielectric constants of BSTN basically decreased while the tanδ increased with the increase in x value. Both dielectric constant and tanδ decreased with the applied frequency increased for the same x value. There were two Curie points for BSTN composite ceramics. The first one belonging to the perovskite phase decreased with the increase in x value, but the second one belonging to the tungsten bronze phase kept almost constant at about 300°C.


Sign in / Sign up

Export Citation Format

Share Document