Comparison of apparent resistivity functions for transient electromagnetic methods

Geophysics ◽  
1983 ◽  
Vol 48 (6) ◽  
pp. 787-789 ◽  
Author(s):  
A. P. Raiche

The use of transient electromagnetic (TEM) methods is increasing throughout the world because of their success in finding conductive anomalies in regions previously thought inappropriate for EM techniques. Most TEM systems now in use (SIROTEM UTEM, Crone Pulse EM, etc.) employ voltage measurements, i.e., measurements of the time derivative of the magnetic field. However, the success of SQUID based receiving systems in many fields has led research organizations (such as the Bureau of Mineral Resources, Australia) to investigate the use of SQUIDs in TEM systems to obtain direct measurements of the magnetic field.

2021 ◽  
Vol 2083 (4) ◽  
pp. 042072
Author(s):  
Yajuan Jia ◽  
Jianbo Zheng ◽  
Hongfang Zhou

Abstract Depth apparent resistivity imaging is an important process of data processing and analysis in the aviation transient electromagnetic method. It can provide reference value of conductor depth, vertical extension, and other information, and can accurately provide the measurement of each aviation transient electromagnetic measurement system. The structural section of the apparent conductivity of the one-dimensional layered medium on the line. As an advanced geophysical exploration technology, the aerial transient electromagnetic method has been applied significantly in the exploration of polymetallic minerals abroad in recent years. In this paper, based on the theory of ground-to-air transient electromagnetic method with multiple radiation sources, a corresponding multi-component global apparent resistivity definition method is established. The advantages of using the magnetic field strength to define the global apparent resistivity of the multi-radiation field source ground-air system are analysed. For each component of the magnetic field strength, respective global apparent resistivity algorithms are proposed to realize the multi-component, full-time, and full-space visual resistivity. The resistivity is calculated, and the influence of the offset on the global apparent resistivity is analysed. By adjusting the relative position of the source and the current direction and other parameters, the multi-radiation source transient electromagnetic ground-air system can not only strengthen the signal strength of different components, weaken random interference, but also better distinguish the location of underground anomalies


Geophysics ◽  
1988 ◽  
Vol 53 (11) ◽  
pp. 1459-1468 ◽  
Author(s):  
Ben K. Sternberg ◽  
James C. Washburne ◽  
Louise Pellerin

Shallow inhomogeneities can lead to severe problems in the interpretation of magnetotelluric (MT) data by shifting the MT apparent resistivity sounding curve by a scale factor, which is independent of frequency on the standard log‐apparent‐resistivity versus log‐frequency display. The amount of parallel shift, commonly referred to as the MT static shift, can not be determined directly from conventionally recorded MT data at a single site. One method for measuring the static shift is a controlled‐source measurement of the magnetic field. Unlike the electric field, the magnetic field is relatively unaffected by surface inhomogeneities. The controlled‐source sounding (which may be a relatively shallow sounding made with lightweight equipment) can be combined with a deep MT sounding to obtain a complete, undistorted model of the earth. Inversions of the static shift‐corrected MT data provide a much closer match to well‐log resistivities than do inversions of the uncorrected data. The particular controlled‐source magnetic‐field sounding which we used was a central‐induction Transient ElectroMagnetic (TEM) sounding. Correction for the static shift in the MT data was made by jointly inverting the MT data and the TEM data. A parameter which allowed vertical shifts in the MT apparent resistivity curves was included in the computer inversion to account for static shifts. A simple graphical comparison between the MT apparent resistivities and the TEM apparent resistivities produced essentially the same estimate of the static shift (within 0.1 decade) as the joint computer inversion. Central‐induction TEM measurements were made adjacent to over 100 MT sites in central Oregon. The complete data base of over 100 sites showed an average static shift between 0 and 0.2 decade. However, in the rougher topography and more complex structure of the Cascade Mountain Range, the majority of the sites had static shifts of the order of 0.3 to 0.4 decade. The static shifts in this area are probably due to a combination of topography and surficial inhomogeneities. The TEM apparent resistivity (which is used to estimate the unshifted MT apparent resistivity) does not necessarily agree with either the transverse electric (TE) or the transverse magnetic (TM) MT polarization. TEM apparent resistivity may occur between the two, or may agree with one of the two polarizations, or may lie outside the MT polarizations.


Geophysics ◽  
1989 ◽  
Vol 54 (5) ◽  
pp. 598-608 ◽  
Author(s):  
Gregory A. Newman ◽  
Walter L. Anderson ◽  
Gerald W. Hohmann

Transient electromagnetic (TEM) borehole responses of 3-D vertical and horizontal tabular bodies in a half‐space are calculated to assess the effect of a conductive host. The transmitter is a large loop at the surface of the earth, and the receiver measures the time derivative of the vertical magnetic field. When the host is conductive (100 Ω ⋅ m), the borehole response is due mainly to current channeled through the body. The observed magnetic‐field response can be visualized as due to galvanic currents that pass through the conductor and return in the half‐space. When the host resistivity is increased, the magnetic field of the conductor is influenced more by vortex currents that flow in closed loops inside the conductor. For a moderately resistive host (1000 Ω ⋅ m), the magnetic field of the body is caused by both vortex and galvanic currents. The galvanic response is observed at early times, followed by the vortex response at later times if the body is well coupled to the transmitter. If the host is very resistive, the galvanic response vanishes; and the response of the conductor is caused only by vortex currents. The shapes of the borehole profiles change considerably with changes in the host resistivity because vortex and galvanic current distributions are very different. When only the vortex response is observed, it is easy to distinguish vertical and horizontal conductors. However, in a conductive host where the galvanic response is dominant, it is difficult to interpret the geometry of the body; only the approximate location of the body can be determined easily. For a horizontal conductor and a single transmitting loop, only the galvanic response enables one to determine whether the conductor is between the transmitter and the borehole or beyond the borehole. A field example shows behavior similar to that of our theoretical results.


2021 ◽  
Vol 11 (10) ◽  
pp. 4567
Author(s):  
Xiaoqing Zhang ◽  
Yaowu Wang

An effective method is proposed in this paper for calculating the transient magnetic field and induced voltage in the photovoltaic bracket system under lightning stroke. Considering the need for the lightning current responses on various branches of the photovoltaic bracket system, a brief outline is given to the equivalent circuit model of the photovoltaic bracket system. The analytic formulas of the transient magnetic field are derived from the vector potential for the tilted, vertical and horizontal branches in the photovoltaic bracket system. With a time–space discretization scheme put forward for theses formulas, the magnetic field distribution in an assigned spatial domain is determined on the basis of the lightning current responses. The magnetic linkage passing through a conductor loop is evaluated by the surface integral of the magnetic flux density and the induced voltage is obtained from the time derivative of the magnetic linkage. In order to check the validity of the proposed method, an experiment is made on a reduced-scale photovoltaic bracket system. Then, the proposed method is applied to an actual photovoltaic bracket system. The calculations are performed for the magnetic field distributions and induced voltages under positive and negative lightning strokes.


Geophysics ◽  
1986 ◽  
Vol 51 (7) ◽  
pp. 1462-1471 ◽  
Author(s):  
Brian R. Spies ◽  
Dwight E. Eggers

Problems and misunderstandings arise with the concept of apparent resistivity when the analogy between an apparent resistivity computed from geophysical observations and the true resistivity structure of the subsurface is drawn too tightly. Several definitions of apparent resistivity are available for use in electromagnetic methods; however, those most commonly used do not always exhibit the best behavior. Many of the features of the apparent resistivity curve which have been interpreted as physically significant with one definition disappear when alternative definitions are used. It is misleading to compare the detection or resolution capabilities of different field systems or configurations solely on the basis of the apparent resistivity curve. For the in‐loop transient electromagnetic (TEM) method, apparent resistivity computed from the magnetic field response displays much better behavior than that computed from the induced voltage response. A comparison of “exact” and “asymptotic” formulas for the TEM method reveals that automated schemes for distinguishing early‐time and late‐time branches are at best tenuous, and those schemes are doomed to failure for a certain class of resistivity structures (e.g., the loop size is large compared to the layer thickness). For the magnetotelluric (MT) method, apparent resistivity curves defined from the real part of the impedance exhibit much better behavior than curves based on the conventional definition that uses the magnitude of the impedance. Results of using this new definition have characteristics similar to apparent resistivity obtained from time‐domain processing.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1489-1494 ◽  
Author(s):  
Richard S. Smith ◽  
A. Peter Annan

The traditional sensor used in transient electromagnetic (EM) systems is an induction coil. This sensor measures a voltage response proportional to the time rate of change of the magnetic field in the EM bandwidth. By simply integrating the digitized output voltage from the induction coil, it is possible to obtain an indirect measurement of the magnetic field in the same bandwidth. The simple integration methodology is validated by showing that there is good agreement between synthetic voltage data integrated to a magnetic field and synthetic magnetic‐field data calculated directly. Further experimental work compares induction‐coil magnetic‐field data collected along a profile with data measured using a SQUID magnetometer. These two electromagnetic profiles look similar, and a comparison of the decay curves at a critical point on the profile shows that the two types of measurements agree within the bounds of experimental error. Comparison of measured voltage and magnetic‐field data show that the two sets of profiles have quite different characteristics. The magnetic‐field data is better for identifying, discriminating, and interpreting good conductors, while suppressing the less conductive targets. An induction coil is therefore a suitable sensor for the indirect collection of EM magnetic‐field data.


Geophysics ◽  
2004 ◽  
Vol 69 (5) ◽  
pp. 1192-1202 ◽  
Author(s):  
Michael Commer ◽  
Gregory Newman

A parallel finite‐difference algorithm for the solution of diffusive, three‐dimensional (3D) transient electromagnetic field simulations is presented. The purpose of the scheme is the simulation of both electric fields and the time derivative of magnetic fields generated by galvanic sources (grounded wires) over arbitrarily complicated distributions of conductivity and magnetic permeability. Using a staggered grid and a modified DuFort‐Frankel method, the scheme steps Maxwell's equations in time. Electric field initialization is done by a conjugate‐gradient solution of a 3D Poisson problem, as is common in 3D resistivity modeling. Instead of calculating the initial magnetic field directly, its time derivative and curl are employed in order to advance the electric field in time. A divergence‐free condition is enforced for both the magnetic‐field time derivative and the total conduction‐current density, providing accurate results at late times. In order to simulate large realistic earth models, the algorithm has been designed to run on parallel computer platforms. The upward continuation boundary condition for a stable solution in the infinitely resistive air layer involves a two‐dimensional parallel fast Fourier transform. Example simulations are compared with analytical, integral‐equation and spectral Lanczos decomposition solutions and demonstrate the accuracy of the scheme.


2006 ◽  
Vol 24 (12) ◽  
pp. 3411-3419 ◽  
Author(s):  
D. Martini ◽  
K. Mursula

Abstract. We study here the recently proposed measure of local geomagnetic activity called the IHV (Inter-Hour Variability) index calculated for the Eskdalemuir (ESK) station. It was found earlier that the ESK IHV index depicts an artificial, step-like increase from 1931 to 1932. We show here that this increase is due to the fact that the values of the magnetic field components of the ESK observatory stored at the World Data Center are two-hour running averages of hourly data stored in ESK yearbooks. Two-hour averaging greatly reduces the variability of the data which leads to artificially small values of the IHV index in 1911–1931. We also study the effect of two-hour averaging upon hourly mean and spot values using 1-minute data available for recent years, and calculate the correction factors for the early years, taking into account the weak dependence of correction factors on solar activity. Using these correction factors, we correct the ESK IHV indices in 1912–1931, and revise the estimate of the centennial change based on them. The effect of correction is very significant: the centennial increase in the ESK IHV-raw (IHV-cor) index in 1912–2000 changes from 73.9% (134.4%) before correction to 10.3% (25.3%) thereafter, making the centennial increase at ESK quite similar to other mid-latitude stations. Obviously, earlier long-term studies based on ESK IHV values are affected by the correction and need to be revised. These results also strongly suggest that the ESK yearbook data should be digitized and the hourly ESK data at WDC should be replaced by them.


Geophysics ◽  
1970 ◽  
Vol 35 (2) ◽  
pp. 331-336 ◽  
Author(s):  
Saurabh K. Verma ◽  
Rishi Narain Singh

Analytic expressions for the quasi‐static electromagnetic response of a sphere in presence of unit‐step and ramp‐type time varying magnetic fields are derived. The conductivity inside the sphere is assumed to vary linearly with radius, i.e. [Formula: see text], where ρ is radial coordinate, [Formula: see text] is a constant and a is the radius of sphere. Curves showing the decay of the magnetic field for both types of fields are presented. In the case of ramp‐type applied magnetic field, the magnitudes of maxima of the induced magnetic field are found to decrease with increase in the rise time of the applied field and, hence, exciting pulses having small values of rise time should be used. It is believed that the analysis will be useful in the geoelectric exploration for highly conducting mineral deposits.


Sign in / Sign up

Export Citation Format

Share Document