Synthetic electric sounding surveys over known oil fields

Geophysics ◽  
1984 ◽  
Vol 49 (11) ◽  
pp. 1959-1967 ◽  
Author(s):  
N. R. Garg ◽  
G. V. Keller

The possibility of using various types of electrical methods to locate oil or gas fields has been proposed in recent years. In an effort to quantify the anomaly to be expected with electrical sounding methods, average geoelectrical parameters have been determined by studying electrical well logs from several oil fields characterized by different geoelectrical sections. The dc resistivity anomaly due to the presence of an oil‐bearing layer at depth depends upon the sequence of resistivities above and below and the electrode array employed. The radial dipole array gives the largest anomaly values, and is followed by other arrays such as the Schlumberger and Wenner arrays. The maximum anomaly in apparent resistivity is observed when the resistivity beneath the target zone is lower than that above; the relative anomaly in apparent resistivity is almost the same as the contrast ratio of the transverse resistance of the oil‐bearing layer to the overlying beds. When the radial dipole array is used, a limited areal extent of the oil‐bearing layer does not cause a significant change from the anomaly value due to a layer of infinite lateral extent. In that case the least dimension is about four times the depth. Use of one buried current electrode in the vicinity of the oil‐bearing layer increases the amplitude of the anomaly; the maximum anomaly appears at a separation comparable to the depth. Typical anomalies in apparent resistivity caused by these oil fields range from less than 0.1 percent to more than 10 percent. Such anomalies would be detectable only with an order of magnitude improvement in the capabilities of electrical sounding methods, or with considerably larger oil field targets.

Author(s):  
S.O Oyegoke ◽  
A.S Adebanjo ◽  
O.O Fayomi ◽  
O. Obot

This study aimed to determine the prospect of groundwater in Afe Babalola University, Ado-Ekiti(ABUAD); result of which will inform of the possibility of getting sufficient water underground. Geophysical survey was carried out in the study area and complemented with performance of an existing borehole. The survey involved 1-D Vertical Electrical Sounding (VES) utilizing the Schlumberger electrode array with half-current electrode separation (AB/2) that ranged from 1m to 50m. The VES data interpretation involved partial curve matching and computer assisted 1-D forward modeling using IPI 2 WIN software. The results showed the subsurface to have 3-layer earth strata comprising of sandy-clay top soil up to 3.26m deep, weathered/fractured basement in the next 9.06m depth and then, the fresh basement with the weathered layer constituting the main aquifer unit. The resistivity values of the weathered and fractured basement are 174 and 192 ohmm indicating relatively low potential for groundwater resource. Pumping test on a nearby borehole gave specific capacity of 7.95m2/day which depicts a low to intermediate transmissivity conforming to the VES.


Author(s):  
O. E. Odeyemi ◽  
O. M. Odeyemi ◽  
S. A. Owolabi ◽  
E. A. Mamukuyomi ◽  
R. A. Salako

Owing to fast increase in number of staff and students of Joseph Ayo Babalola University, Ikeji Arakeji, Southwestern Nigeria, it is therefore very important to carry out this research in order to recommend the actual locations where boreholes can be sunk for good potential yields of groundwater when the time comes. The aim of this research is to carry out vertical electrical sounding geophysical survey at study area with a view to determining good aquifers that are good for the accumulation of groundwater. The study area is located between latitude 0820225 m to 0820345 m (UTM) Northings and longitude 717320 m to 717450 m (UTM) Eastings. Schlumberger electrode array was employed for the study using Ohmega Resistivity meter for the data acquisition. The geoelectric survey of the study area comprised of twelve vertical electrical soundings, with maximum current electrode spacing (AB) of 100 m. The modeled curves are mainly KH-type. The geoelectric sections generated from the sounding curves revealed 4 major layers earth models. The topsoil is made up of clay, clayey sand/lateritic sand with resistivity and thicknesses varying from 54.7 – 210.1ohm-m and 0.2 –0.8m respectively. The second layer is the lateritic clay with resistivities and thicknesses varying from 334 – 963ohm-m and 1.5 – 10.8m respectively. The third layer constitutes the clay / sandy fractured quartzite and it serves as the aquifer unit. The resistivity values lie between 71.7 and 498 ohm-m while the thicknesses vary from 2.1 – 76.3 m. The fourth layer is the fractured/presumably fresh basement bedrock with the resistivity varying from 1879 – 13991.8 ohm-m. Areas characterized with fractured basement of low resistivity with appreciable thickness are therefore recommended for the siting of boreholes. It is concluded that the vertical electrical sounding points of the study area are good aquifers for groundwater accumulation.


Author(s):  
Vinodh K ◽  
Senthilkumar S ◽  
Gowtham B ◽  
Srinivasamoorthy K

The electrical resistivity technique is extremely supportive to investigate the nature of subsurface lithology by understand the variations in their electrical properties. The Vertical Electrical Sounding (VES) technique by Schlumberger electrode array applied in 77 Locations at Ongur River Sub Basin in Tamil Nadu, India. The Signal stacking Resistivity Meter Model SSR-MP-ATS has been applied to gather the VES data by employed a Schlumberger array, one end current electrode (AB/2) ranging from 1 to 100 m, other side placing potential electrode (MN) from 0.5 to 10 m. The concept of the VES data interpreting is the foundation of IPI2Win. It means for a VES data are treated as a unity representing the geological structure of the Ongur River watershed. The output Geo-electrical layers, iso- resistivities and thickness of this area were prepared in spatial maps by using ARCGIS software. Consequently, the following zones with different resistivity values are detected consequent to different formations: (1) identification of lithology Ongur River Sub Basin, (2) layer saturated with fresh groundwater, (3) determine saltwater horizon.


2011 ◽  
Vol 367 ◽  
pp. 795-800
Author(s):  
F.O. Ezomo ◽  
C.N. Akujieze

Geophysical survey based on electrical resistivity method employing the techniques of vertical electrical sounding (VES) was carried out in order to investigate Groundwater existence in Delta North District, of Nigeria. This research work became necessary in order to solve the problem of acute water shortage in the area by way of prospecting or searching for additional aquifers which would subsidize the existing one, domestically, industrially and agriculturally. Ten (10) vertical electrical sounding (VES) (uniformly distributed) tests were conducted in the area and its environs using “Schlumberger” electrode array. The VES were carried out with half current electrode spacing with the spread Im-928m at six (06) points per decade. The results of the interpretation identified wet sand/clean sand as perched aquifer which can deliver ground water to the bore-hole at perceptible rates between depths of 85m to 145m below sea level. The resistivity of the aquifer detected varied from 95.0 ohm-m to 110,000 ohm-m while the thickness ranged from 30.0m to 105.0m.


2021 ◽  
Author(s):  
Ivan Noville ◽  
Milena da Silva Maciel ◽  
Anna Luiza de Moraes y blanco de Mattos ◽  
João Gabriel Carvalho de Siqueira

Abstract This article's goal is to present some of the main flow assurance challenges faced by PETROBRAS in the Buzios oil field, from its early design stages to full operation, up to this day. These challenges include: hydrate formation in WAG (Water Alternating Gas) operations; reliability of the chemical injection system to prevent scale deposition; increasing GLR (Gas Liquid Ratio) management and operations with extremely high flowrates. Flow assurance experience amassed in Buzios and in other pre-salt oil fields, regarding all these presented issues, is particularly relevant for the development of future projects with similar characteristics, such as high liquid flow rate, high CO2 content and high scaling potential.


2021 ◽  
Author(s):  
Mohammed Ahmed Al-Janabi ◽  
Omar F. Al-Fatlawi ◽  
Dhifaf J. Sadiq ◽  
Haider Abdulmuhsin Mahmood ◽  
Mustafa Alaulddin Al-Juboori

Abstract Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorithm to tackle the challenging task of optimally allocating the gas lift injection rate through numerical modeling and simulation studies to maximize the oil production of a Middle Eastern oil field with 20 production wells with limited amount of gas to be injected. The key objective of this study is to assess the performance of the wells of the field after applying gas lift as an artificial lift method and applying the genetic algorithm as an optimization algorithm while comparing the results of the network to the case of artificially lifted wells by utilizing ESP pumps to the network and to have a more accurate view on the practicability of applying the gas lift optimization technique. The comparison is based on different measures and sensitivity studies, reservoir pressure, and water cut sensitivity analysis are applied to allow the assessment of the performance of the wells in the network throughout the life of the field. To have a full and insight view an economic study and comparison was applied in this study to estimate the benefits of applying the gas lift method and the GA optimization technique while comparing the results to the case of the ESP pumps and the case of naturally flowing wells. The gas lift technique proved to have the ability to enhance the production of the oil field and the optimization process showed quite an enhancement in the task of maximizing the oil production rate while using the same amount of gas to be injected in the each well, the sensitivity analysis showed that the gas lift method is comparable to the other artificial lift method and it have an upper hand in handling the reservoir pressure reduction, and economically CAPEX of the gas lift were calculated to be able to assess the time to reach a profitable income by comparing the results of OPEX of gas lift the technique showed a profitable income higher than the cases of naturally flowing wells and the ESP pumps lifted wells. Additionally, the paper illustrated the genetic algorithm (GA) optimization model in a way that allowed it to be followed as a guide for the task of optimizing the gas injection rate for a network with a large number of wells and limited amount of gas to be injected.


2021 ◽  
Vol 225 ◽  
pp. 01008
Author(s):  
Oleg Latypov ◽  
Sergey Cherepashkin ◽  
Dina Latypova

Corrosion of equipment in the oil and gas complex is a global problem, as it contributes to huge material costs and global disasters that violate the environment. Corrosion control methods used to protect equipment do not always ensure the absolute safety of the operation of oil and gas facilities. Moreover, they are quite expensive. The developed method for controlling the electrochemical parameters of aqueous solutions to combat complications during the operation of oil-field pipelines provides the necessary protection against corrosion. The method is economical and environmentally friendly, since it does not require the use of chemical reagents. The test results have shown a very high efficiency in dealing with complications in oil fields.


Author(s):  
Robert Wilson ◽  
Calvin Kwesi Gafrey ◽  
George Amoako ◽  
Benjamin Anderson

Qualitative and quantitative analyses of chemical elements in crude petroleum using energy-dispersive X-ray fluorescence spectroscopic technique has attracted the attention of scientific world because it is fast, cheap, non-destructive and assurance in quality compared to other methods. Metallic element characterisation of crude petroleum is important in the petrochemical industry because it determines rock reservoir properties, the technology needed for extraction and refinery process, hence an exciting field that calls for research. X-ray fluorescence method was used for metallic composition analysis of four rundown crude petroleum samples (SB-2, SB-4, TB-2 and TB-1) from three oil fields (Saltpond, TEN and Jubilee). It was conducted at the National Nuclear Research Institute of Ghana. Analysis of the four samples concluded that oil field maturity decreases orderly from Saltpond, Jubilee and TEN. Vanadium-nickel ratios for each crude petroleum sample was less than 0.5, indicating that both Saltpond and Tano sedimentary rocks are of marine organic origin. Higher concentration levels of rare earth metal elements (scandium and yttrium) in the Saltpond sedimentary basin compared to Tano sedimentary rock suggest seismic effect of McCarthy Hills on Saltpond Basin. The strong negative correlation between the vanadium-nickel ratio (predictor) and scandium concentration (dependent) among the three oil fields implies that scandium concentration can equally be used to characterise the oil fields just as the vanadium-nickel ratios.


2020 ◽  
Vol 4 (2) ◽  
pp. 99-102
Author(s):  
Johnson C. Ibuot ◽  
Moses M. M. Ekpa ◽  
Doris O. Okoroh ◽  
Aniefiok S. Akpan Emmanuel T. Omeje

Geoelectric survey employing Vertical Electrical Sounding (VES) was carried out in order to assess the groundwater repositories. A total of seven soundings were obtained with their layer resistivity, thickness and depth within the maximum electrode separation. The geoelectric parameters obtained were used to estimate the Dar-Zarrouk parameters (longitudinal conductance and transverse resistance), hydraulic conductivity and transmissivity. The result shows the aquifer resistivity ranging from 77.14 to 784.76 Ωm, with thickness ranging from 28.78 to 80.04 m. The longitudinal conductance have values ranging from 0.071 to 0.825 Ω-1 while the values of hydraulic conductivity and transmissivity range from 1.087 to 5.881 m/day and 60.180 to 374.031 𝑚2/day respectively. The contour maps generated show the variation of these parameters across the subsurface, and areas with poor protective capacity were delineated. The results also delineate the groundwater potential of the study area as moderate, while the corrosivity rating indicates non-corrosive and slightly corrosive.


2019 ◽  
Vol 13 (27) ◽  
pp. 164-173
Author(s):  
Zainab Mohammed Hassan

In this work, measurements of activity concentration of naturally occurring radioactive materials (NORM) isotopes and their related hazard indices for several materials such as crude oil, sludge and water in Ahdeb oil fields in Waste governorate using high pure germanium coaxial detection technique. The average values for crude oil samples were174.72Bq/l, 43.46Bq/l, 355.07Bq/l, 264.21Bq/l, 122.52nGy/h, 0.7138, 1.1861, 0.601 mSv/y, 0.1503mSv/y and 1.8361 for Ra-226, Ac-228, K-40, Ra eq, D, H-external and H-internal respectively. According to the results; the ratio between 238U to 232Th was 4, which represents the natural ratio in the crust earth; therefore, one can be strongly suggested that the geo-stricture of the Ahdeb oil fields dose not contents any kind of rocks. Although the results indicate the rising in the activity concentration of NORM isotopes, the national and international comparisons proved that it is still in the world range limits.


Sign in / Sign up

Export Citation Format

Share Document