Fast 2-D ray+Born migration/inversion in complex media

Geophysics ◽  
1999 ◽  
Vol 64 (1) ◽  
pp. 162-181 ◽  
Author(s):  
Philippe Thierry ◽  
Stéphane Operto ◽  
Gilles Lambaré

In this paper, we evaluate the capacity of a fast 2-D ray+Born migration/inversion algorithm to recover the true amplitude of the model parameters in 2-D complex media. The method is based on a quasi‐Newtonian linearized inversion of the scattered wavefield. Asymptotic Green’s functions are computed in a smooth reference model with a dynamic ray tracing based on the wavefront construction method. The model is described by velocity perturbations associated with diffractor points. Both the first traveltime and the strongest arrivals can be inverted. The algorithm is implemented with several numerical approximations such as interpolations and aperture limitation around common midpoints to speed the algorithm. Both theoritical and numerical aspects of the algorithm are assessed with three synthetic and real data examples including the 2-D Marmousi example. Comparison between logs extracted from the exact Marmousi perturbation model and the computed images shows that the amplitude of the velocity perturbations are recovered accurately in the regions of the model where the ray field is single valued. In the presence of caustics, neither the first traveltime nor the most energetic arrival inversion allow for a full recovery of the amplitudes although the latter improves the results. We conclude that all the arrivals associated with multipathing through transmission caustics must be taken into account if the true amplitude of the perturbations is to be found. Only 22 minutes of CPU time is required to migrate the full 2-D Marmousi data set on a Sun SPARC 20 workstation. The amplitude loss induced by the numerical approximations on the first traveltime and the most energetic migrated images are evaluated quantitatively and do not exceed 8% of the energy of the image computed without numerical approximation. Computational evaluation shows that extension to a 3-D ray+Born migration/inversion algorithm is realistic.

2019 ◽  
Vol XVI (2) ◽  
pp. 1-11
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Muhammad Akbar Ali Shah ◽  
Emrah Altun

A new three-parameter continuous model called the exponentiated half-logistic Lomax distribution is introduced in this paper. Basic mathematical properties for the proposed model were investigated which include raw and incomplete moments, skewness, kurtosis, generating functions, Rényi entropy, Lorenz, Bonferroni and Zenga curves, probability weighted moment, stress strength model, order statistics, and record statistics. The model parameters were estimated by using the maximum likelihood criterion and the behaviours of these estimates were examined by conducting a simulation study. The applicability of the new model is illustrated by applying it on a real data set.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. U25-U38 ◽  
Author(s):  
Nuno V. da Silva ◽  
Andrew Ratcliffe ◽  
Vetle Vinje ◽  
Graham Conroy

Parameterization lies at the center of anisotropic full-waveform inversion (FWI) with multiparameter updates. This is because FWI aims to update the long and short wavelengths of the perturbations. Thus, it is important that the parameterization accommodates this. Recently, there has been an intensive effort to determine the optimal parameterization, centering the fundamental discussion mainly on the analysis of radiation patterns for each one of these parameterizations, and aiming to determine which is best suited for multiparameter inversion. We have developed a new parameterization in the scope of FWI, based on the concept of kinematically equivalent media, as originally proposed in other areas of seismic data analysis. Our analysis is also based on radiation patterns, as well as the relation between the perturbation of this set of parameters and perturbation in traveltime. The radiation pattern reveals that this parameterization combines some of the characteristics of parameterizations with one velocity and two Thomsen’s parameters and parameterizations using two velocities and one Thomsen’s parameter. The study of perturbation of traveltime with perturbation of model parameters shows that the new parameterization is less ambiguous when relating these quantities in comparison with other more commonly used parameterizations. We have concluded that our new parameterization is well-suited for inverting diving waves, which are of paramount importance to carry out practical FWI successfully. We have demonstrated that the new parameterization produces good inversion results with synthetic and real data examples. In the latter case of the real data example from the Central North Sea, the inverted models show good agreement with the geologic structures, leading to an improvement of the seismic image and flatness of the common image gathers.


2020 ◽  
pp. 1-22
Author(s):  
Luis E. Nieto-Barajas ◽  
Rodrigo S. Targino

ABSTRACT We propose a stochastic model for claims reserving that captures dependence along development years within a single triangle. This dependence is based on a gamma process with a moving average form of order $p \ge 0$ which is achieved through the use of poisson latent variables. We carry out Bayesian inference on model parameters and borrow strength across several triangles, coming from different lines of businesses or companies, through the use of hierarchical priors. We carry out a simulation study as well as a real data analysis. Results show that reserve estimates, for the real data set studied, are more accurate with our gamma dependence model as compared to the benchmark over-dispersed poisson that assumes independence.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
K. S. Sultan ◽  
A. S. Al-Moisheer

We discuss the two-component mixture of the inverse Weibull and lognormal distributions (MIWLND) as a lifetime model. First, we discuss the properties of the proposed model including the reliability and hazard functions. Next, we discuss the estimation of model parameters by using the maximum likelihood method (MLEs). We also derive expressions for the elements of the Fisher information matrix. Next, we demonstrate the usefulness of the proposed model by fitting it to a real data set. Finally, we draw some concluding remarks.


In this paper, we have defined a new two-parameter new Lindley half Cauchy (NLHC) distribution using Lindley-G family of distribution which accommodates increasing, decreasing and a variety of monotone failure rates. The statistical properties of the proposed distribution such as probability density function, cumulative distribution function, quantile, the measure of skewness and kurtosis are presented. We have briefly described the three well-known estimation methods namely maximum likelihood estimators (MLE), least-square (LSE) and Cramer-Von-Mises (CVM) methods. All the computations are performed in R software. By using the maximum likelihood method, we have constructed the asymptotic confidence interval for the model parameters. We verify empirically the potentiality of the new distribution in modeling a real data set.


2020 ◽  
Vol 44 (5) ◽  
pp. 362-375
Author(s):  
Tyler Strachan ◽  
Edward Ip ◽  
Yanyan Fu ◽  
Terry Ackerman ◽  
Shyh-Huei Chen ◽  
...  

As a method to derive a “purified” measure along a dimension of interest from response data that are potentially multidimensional in nature, the projective item response theory (PIRT) approach requires first fitting a multidimensional item response theory (MIRT) model to the data before projecting onto a dimension of interest. This study aims to explore how accurate the PIRT results are when the estimated MIRT model is misspecified. Specifically, we focus on using a (potentially misspecified) two-dimensional (2D)-MIRT for projection because of its advantages, including interpretability, identifiability, and computational stability, over higher dimensional models. Two large simulation studies (I and II) were conducted. Both studies examined whether the fitting of a 2D-MIRT is sufficient to recover the PIRT parameters when multiple nuisance dimensions exist in the test items, which were generated, respectively, under compensatory MIRT and bifactor models. Various factors were manipulated, including sample size, test length, latent factor correlation, and number of nuisance dimensions. The results from simulation studies I and II showed that the PIRT was overall robust to a misspecified 2D-MIRT. Smaller third and fourth simulation studies were done to evaluate recovery of the PIRT model parameters when the correctly specified higher dimensional MIRT or bifactor model was fitted with the response data. In addition, a real data set was used to illustrate the robustness of PIRT.


Geophysics ◽  
1995 ◽  
Vol 60 (3) ◽  
pp. 796-809 ◽  
Author(s):  
Zhong‐Min Song ◽  
Paul R. Williamson ◽  
R. Gerhard Pratt

In full‐wave inversion of seismic data in complex media it is desirable to use finite differences or finite elements for the forward modeling, but such methods are still prohibitively expensive when implemented in 3-D. Full‐wave 2-D inversion schemes are of limited utility even in 2-D media because they do not model 3-D dynamics correctly. Many seismic experiments effectively assume that the geology varies in two dimensions only but generate 3-D (point source) wavefields; that is, they are “two‐and‐one‐half‐dimensional” (2.5-D), and this configuration can be exploited to model 3-D propagation efficiently in such media. We propose a frequency domain full‐wave inversion algorithm which uses a 2.5-D finite difference forward modeling method. The calculated seismogram can be compared directly with real data, which allows the inversion to be iterated. We use a descents‐related method to minimize a least‐squares measure of the wavefield mismatch at the receivers. The acute nonlinearity caused by phase‐wrapping, which corresponds to time‐domain cycle‐skipping, is avoided by the strategy of either starting the inversion using a low frequency component of the data or constructing a starting model using traveltime tomography. The inversion proceeds by stages at successively higher frequencies across the observed bandwidth. The frequency domain is particularly efficient for crosshole configurations and also allows easy incorporation of attenuation, via complex velocities, in both forward modeling and inversion. This also requires the introduction of complex source amplitudes into the inversion as additional unknowns. Synthetic studies show that the iterative scheme enables us to achieve the theoretical maximum resolution for the velocity reconstruction and that strongly attenuative zones can be recovered with reasonable accuracy. Preliminary results from the application of the method to a real data set are also encouraging.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2899
Author(s):  
Abhinandana Boodi ◽  
Karim Beddiar ◽  
Yassine Amirat ◽  
Mohamed Benbouzid

This paper proposes an approach to develop building dynamic thermal models that are of paramount importance for controller application. In this context, controller requires a low-order, computationally efficient, and accurate models to achieve higher performance. An efficient building model is developed by having proper structural knowledge of low-order model and identifying its parameter values. Simplified low-order systems can be developed using thermal network models using thermal resistances and capacitances. In order to determine the low-order model parameter values, a specific approach is proposed using a stochastic particle swarm optimization. This method provides a significant approximation of the parameters when compared to the reference model whilst allowing low-order model to achieve 40% to 50% computational efficiency than the reference one. Additionally, extensive simulations are carried to evaluate the proposed simplified model with solar radiation and identified model parameters. The developed simplified model is afterward validated with real data from a case study building where the achieved results clearly show a high degree of accuracy compared to the actual data.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1786 ◽  
Author(s):  
A. M. Abd El-Raheem ◽  
M. H. Abu-Moussa ◽  
Marwa M. Mohie El-Din ◽  
E. H. Hafez

In this article, a progressive-stress accelerated life test (ALT) that is based on progressive type-II censoring is studied. The cumulative exposure model is used when the lifetime of test units follows Pareto-IV distribution. Different estimates as the maximum likelihood estimates (MLEs) and Bayes estimates (BEs) for the model parameters are discussed. Bayesian estimates are derived while using the Tierney and Kadane (TK) approximation method and the importance sampling method. The asymptotic and bootstrap confidence intervals (CIs) of the parameters are constructed. A real data set is analyzed in order to clarify the methods proposed through this paper. Two types of the progressive-stress tests, the simple ramp-stress test and multiple ramp-stress test, are compared through the simulation study. Finally, some interesting conclusions are drawn.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. M1-M10 ◽  
Author(s):  
Leonardo Azevedo ◽  
Ruben Nunes ◽  
Pedro Correia ◽  
Amílcar Soares ◽  
Luis Guerreiro ◽  
...  

Due to the nature of seismic inversion problems, there are multiple possible solutions that can equally fit the observed seismic data while diverging from the real subsurface model. Consequently, it is important to assess how inverse-impedance models are converging toward the real subsurface model. For this purpose, we evaluated a new methodology to combine the multidimensional scaling (MDS) technique with an iterative geostatistical elastic seismic inversion algorithm. The geostatistical inversion algorithm inverted partial angle stacks directly for acoustic and elastic impedance (AI and EI) models. It was based on a genetic algorithm in which the model perturbation at each iteration was performed recurring to stochastic sequential simulation. To assess the reliability and convergence of the inverted models at each step, the simulated models can be projected in a metric space computed by MDS. This projection allowed distinguishing similar from variable models and assessing the convergence of inverted models toward the real impedance ones. The geostatistical inversion results of a synthetic data set, in which the real AI and EI models are known, were plotted in this metric space along with the known impedance models. We applied the same principle to a real data set using a cross-validation technique. These examples revealed that the MDS is a valuable tool to evaluate the convergence of the inverse methodology and the impedance model variability among each iteration of the inversion process. Particularly for the geostatistical inversion algorithm we evaluated, it retrieves reliable impedance models while still producing a set of simulated models with considerable variability.


Sign in / Sign up

Export Citation Format

Share Document