A FIELD TEST OF THE MAGNETOMETRIC RESISTIVITY (MMR) METHOD

Geophysics ◽  
1976 ◽  
Vol 41 (6) ◽  
pp. 1170-1183 ◽  
Author(s):  
R. N. Edwards ◽  
E. C. Howell

The electrical prospecting method, known as the Magnetometric Resistivity (MMR) method, is based on the measurement of the low level (about 100 milligamma), low‐frequency (1–5 Hz) magnetic fields associated with noninductive current flow in the ground. The horizontal component of the magnetic field is measured along profiles which are at right angles to a baseline joining two widely separated current electrodes. The field test was conducted on a plateau in the western cordillera, where the topography is characterized by steep hills, bold ridges, gullies and narrow canyons. A steep faulted contact between basement rocks of differing resistivity is exposed on one flank of the plateau, beneath over 500 m of Tertiary volcanics and sediments. The object of the test was to determine if the basement contact could be mapped by the MMR method, working entirely on top of the plateau. The plan position of the contact could be inferred approximately from measurements at the outcrop. The object was achieved with a minimum of data processing. Using a theoretical model which resembles a thick, outcropping vertical dike of infinite vertical extent, the contrast in resistivity across the contact is estimated. A further model, that of an exponential “alpha” center, is also fitted to the data in an effort to pin‐point an anomalous region which may have unusually high conductivity.

1984 ◽  
Vol 24 (03) ◽  
pp. 269-274 ◽  
Author(s):  
Arthur F. Kuckes ◽  
T. Lautzenhiser ◽  
A.G. Nekut ◽  
R. Sigal

Abstract This paper describes an electromagnetic method to facilitate drilling a well to intersect a target well casing. It has an important application in control of blown out oil and gas wells. By this method, a relief well was directionally drilled to intersect the casing of a blowout at 8,000 ft [2700 m]. The relative distance and azimuthal direction to the target casing can be determined when the relief well is up to more than 100 ft [30 m] from the blowout. Introduction There is a need, particularly in the control of runaway oil or gas wells, for the ability to drill a relief well to intersect a target well casing at a specified subsurface depth. Our method consists of detecting and analyzing the magnetic field generated by alternating electric current flow on a target well casing, drillstem, or fish. By comparison to the earth, steel is a very good electrical conductor; a steel well casing has a strong "short-circuiting" effect on the parallel component of electric current now in its vicinity, The magnetic field generated by current flow on the target casing and measured in the relief well can be used to determine the relative distance and direction from the relief well to the target. In this paper, we present the principles of operation along with the results of some field tests. An alternative scheme using a wireline current source is described in the Appendix. Principle of the Method Principle of the Method Consider the apparatus shown in Fig. 1. The dimensions shown can vary greatly: those given are for reference. A low-frequency AC is injected into the ground by use of surface electrodes near the blowout. The return current is collected by remote surface electrodes. If the blowout casing were not present, this arrangement would produce a very small magnetic field response on or near the blowout axis. With the blowout casing in place, there is a large enhancement of the current flowing down the blowout axis, which results in a large enhancement of the magnetic field as indicated by Ampere's law. Considering the geometry of the magnetic field resulting from a current-carrying conductor, the apparent direction to the conductor can be deduced. It is useful to introduce a parameter re that is the radius of a circular column of earth having the same resistance per unit length as the blown out well casing. If the conductivity of the earth is given by sigma e, that of the casing by sigma c, and the well casing has a radius rc and wall thickness hc, then re is given by (1) The electrical conductivity of steel is about 107 (omega.m)-1, whereas that of country rock in a petroleum environment is within an order of magnitude of 0.1 (omega.m)-1. Thus, a well casing with a 1/2-in. [1.3-cm] wall, 10 in. [25 cm] in diameter, has the same electrical resistance per unit length as a column of earth [sigma c = 1(omegam)-1] about 1,000 ft [300 m] in diameter. Such well casing has a short-circuiting effect to vertical current flow on a column of earth approximately this diameter. The sensitivity of standard magnetometers is such that after 100 seconds of signal averaging, an AC magnetic induction of less than 10–2 gammas or alternatively a magnetic field of 10–5 A/m can be detected. This corresponds to the magnetic field generated by a current of 2 mA on well casing 100 ft [30 m] away. The parameter re also indicates the scale length over which current builds up on a casing. Thus, for a semi-infinite casing surrounded by a uniform conductor of much lower conductivity, the current on the casing will build up to its asymptotic value within re of the end of the casing. Consequently, it is a valid approximation to calculate the current on the casing, Ic, by (2) when the electric field, E, parallel to the casing varies slowly on the scale re. This is the situation far from the surface injection electrodes. When a distance on the order of re from the blowout casing, the low-frequency magnetic field signal is caused predominantly by current flow on the blowout: predominantly by current flow on the blowout: (3) SPEJ P. 269


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


Author(s):  
Way-Jam Chen ◽  
Lily Shiau ◽  
Ming-Ching Huang ◽  
Chia-Hsing Chao

Abstract In this study we have investigated the magnetic field associated with a current flowing in a circuit using Magnetic Force Microscopy (MFM). The technique is able to identify the magnetic field associated with a current flow and has potential for failure analysis.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


2020 ◽  
Vol 494 (2) ◽  
pp. 3014-3027
Author(s):  
M Armano ◽  
H Audley ◽  
J Baird ◽  
P Binetruy ◽  
M Born ◽  
...  

ABSTRACT LISA Pathfinder (LPF) has been a space-based mission designed to test new technologies that will be required for a gravitational wave observatory in space. Magnetically driven forces play a key role in the instrument sensitivity in the low-frequency regime (mHz and below), the measurement band of interest for a space-based observatory. The magnetic field can couple to the magnetic susceptibility and remanent magnetic moment from the test masses and disturb them from their geodesic movement. LPF carried on-board a dedicated magnetic measurement subsystem with noise levels of 10 $\rm nT \ Hz^{-1/2}$ from 1 Hz down to 1 mHz. In this paper we report on the magnetic measurements throughout LPF operations. We characterize the magnetic environment within the spacecraft, study the time evolution of the magnetic field and its stability down to 20 μHz, where we measure values around 200 $\rm nT \ Hz^{-1/2}$, and identify two different frequency regimes, one related to the interplanetary magnetic field and the other to the magnetic field originating inside the spacecraft. Finally, we characterize the non-stationary component of the fluctuations of the magnetic field below the mHz and relate them to the dynamics of the solar wind.


Author(s):  
Metharak Jokpudsa ◽  
Supawat Kotchapradit ◽  
Chanchai Thongsopa ◽  
Thanaset Thosdeekoraphat

High-frequency magnetic field has been developed pervasively. The induction of heat from the magnetic field can help to treat tumor tissue to a certain extent. Normally, treatment by the low-frequency magnetic field needed to be combined with magnetic substances. To assist in the induction of magnetic fields and reduce flux leakage. However, there are studies that have found that high frequencies can cause heat to tumor tissue. In this paper present, a new magnetic application will focus on the analysis of the high-frequency magnetic nickel core with multi-coil. In order to focus the heat energy using a high-frequency magnetic field into the tumor tissue. The magnetic coil was excited by 915 MHz signal and the combination of tissues used are muscle, bone, and tumor. The magnetic power on the heating predicted by the analytical model, the power loss density (2.98e-6 w/m3) was analyzed using the CST microwave studio.


2011 ◽  
Vol 495 ◽  
pp. 201-204
Author(s):  
Polykseni Vourna

When a soft ferromagnetic material is flown by an ac current and a magnetic field is applied at the same time, a major change of its impedance is occurred. The aim of this paper is to investigate the influence of low frequency (1KHz-12KHz) ac current and the applied magnetic field on an amorphous magnetic wire (Co68Fe4.35Si12.5B15) without glass coating. For this purpose an experimental configuration has been setup, based on a Wheatstone bridge which receives an ac input signal from a frequency generator. The output is connected to the amorphous wire wrapped with a coil supplied by a dc voltage for the generation of the magnetic field. The output voltage pulse is measured for two cases a) The value of ac frequency is changing while the value of dc voltage applied to the coil remains constant (the magnetic field remains unchanged) and b) the magnetic field is changing while the ac frequency remains constant to a predefined value. Experimental results of the first scenario showed that when the frequency is altered a non-linear increase of the ac signal is observed at the output which shows an increase of the GMI effect and is related to the non-linearity of the wire’s permeability. For the second scenario the results showed an increase of the output signal offset (voltage) which also indicates an increase of the GMI effect.


2003 ◽  
Vol 10 (1/2) ◽  
pp. 3-11 ◽  
Author(s):  
J. S. Pickett ◽  
J. D. Menietti ◽  
D. A. Gurnett ◽  
B. Tsurutani ◽  
P. M. Kintner ◽  
...  

Abstract. Bipolar pulses of ~ 25-100 µs in duration have been observed in the wave electric field data obtained by the Wideband plasma wave instrument on the Cluster spacecraft in the dayside magnetosheath. These pulses are similar in almost all respects to those observed on several spacecraft over the last few years. They represent solitary potential structures, and in this case, electron phase space holes. When the time series data containing the bipolar pulses on Cluster are transformed to the frequency domain by a windowed FFT, the pulses appear as typical broad-band features, extending from the low-frequency cutoff of the bandpass filter, ~ 1 kHz, up to as great as 20-40 kHz in some cases, with decreasing intensity as the frequency increases. The upper frequency cutoff of the broad band is an indication of the individual pulse durations (1/f). The solitary potential structures are detected when the local magnetic field is contained primarily in the spin plane, indicating that they propagate along the magnetic field. Their frequency extent and intensity seem to increase as the angle between the directions of the magnetic field and the plasma flow decreases from 90°. Of major significance is the finding that the overall profile of the broad-band features observed simultaneously by two Cluster spacecraft, separated by a distance of over 750 km, are strikingly similar in terms of onset times, frequency extent, intensity, and termination. This implies that the generation region of the solitary potential structures observed in the magnetosheath near the bow shock is very large and may be located at or near the bow shock, or be connected with the bow shock in some way.


Geophysics ◽  
1978 ◽  
Vol 43 (6) ◽  
pp. 1176-1203 ◽  
Author(s):  
R. N. Edwards ◽  
H. Lee ◽  
M. N. Nabighian

The Magnetometric Resistivity (MMR) method is based on the measurement of the low‐level, low‐frequency magnetic fields associated with noninductive current flow in the ground. A component of the magnetic field is measured in the vicinity of one or more grounded electrodes. Recently, the method was tested successfully in the field. The present paper presents the theoretical basis of the method in a unified format. Part of the material is derived from valuable published papers which are difficult to obtain. The remainder of the paper contains original unpublished theoretical results. It is shown that a horizontally layered earth yields no MMR anomaly. The characteristic anomalies for an anisotropic earth, vertical and dipping contacts, thin and thick dikes, and semicylindrical and hemispherical depressions, as well as alpha media are presented in detail. There are two factors which influence the MMR anomaly; geometry and conductivity contrast. For many models, it is possible to separate these two effects. Type curves are presented for very large conductivity contrasts to illustrate the effect of geometry only. Ancillary curves enable finite conductivity contrasts to be deduced from field data.


Sign in / Sign up

Export Citation Format

Share Document