Transient radiation from an unloaded, finite dipole antenna in a borehole: Experimental and numerical results

Geophysics ◽  
2005 ◽  
Vol 70 (6) ◽  
pp. K43-K51 ◽  
Author(s):  
Sixin Liu ◽  
Motoyuki Sato

Dipole antennas in boreholes are used for tomographic imaging or electromagnetic well logging. A cylindrically layered structure within the borehole will change the radiation characteristics of a dipole antenna. Our objective is to understand the effects of the borehole structure upon the impedance, waveform distortion, and directivity patterns of a dipole antenna. We use a finite-difference, time-domain (FDTD) technique to simulate borehole-antenna radiation, while the geometry of both the dipole and the borehole are modeled with a subgrid technique. The simulated input impedances are verified by experimental results. Both the water-filled and the air-filled boreholes distort the radiated wavefronts, waveforms, and resonant frequencies relative to the same characteristics of a dipole in homogeneous media. A water-filled borehole lowers the first resonant frequency, while an air-filled borehole raises it. At high frequencies, the antenna in the water-filled borehole exhibits radiation side lobes. The borehole effects for water- and air-filled boreholes differ and should not be neglected for borehole antenna design.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mihai-Virgil Nichita ◽  
Maria-Alexandra Paun ◽  
Vladimir-Alexandru Paun ◽  
Viorel-Puiu Paun

In this study, one method of using antennas based on fractals to cover few kinds of public protection and disaster relief (PPDR) communications was presented. Dedicated antenna forms, necessary for antenna design by 5G implementation, were enhanced to suit the requirements of specific applications. Employing fractal-shaped antennas have allowed us to accomplish all these actions, which request compact, conformal, and broadband high performance devices. Antennas derived from Koch’s curve fractals are studied. In order to implement PPDR communications in 5G technology, frequency bandwidths of importance have been carefully selected and properly included in the antenna developments under MATLAB environment. Important information necessary for antenna designers, such as 360 degrees directivity at various frequencies, the impedance (resistance and reactance) along the bandwidth of interest, as well as voltage standing wave ratio (VSWR) along the bandwidth of interest for dipole, one-iteration, and two-iteration Koch’s curves, respectively, have been obtained. The characteristic of directivity at selected frequencies is also highlighted. In order to maximize antenna parameters, this study has successfully proposed using fractal antennas, objects that use self-similarity property of fractals for optimum operation in several frequency ranges. For the studied antennas, we have obtained the following results regarding the maximum gains in dBi (which is the unit of the ratio between the gains of the antenna compared to the gain of an isotropic antenna). For the dipole antennas, the gains are 2.73 dBi and 4.76 dBi at 460 MHz and 770 MHz, respectively. The gains for one-iteration fractal Koch antenna are 6.91 dBi and 4.51 dBi at 460 MHz and 770 MHz, respectively, and finally, for two-iteration fractal Koch antenna, the gains are 4.91 dBi and 3.28 dBi at 460 MHz and 770 MHz, respectively. Moreover, the impedance along the bandwidth is approximately 360 Ohms for two-iteration fractal Koch antenna, 180 Ohms for one-iteration fractal Koch antenna, and 140 Ohms for dipole antenna, respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Son Xuat Ta ◽  
Ikmo Park

A cavity-backed angled-dipole antenna is proposed for millimeter-wave wireless applications. The angled-dipole radiator is built on both sides of an RT/Duroid 5880 substrate (εr=2.2) and fed by a parallel-plate transmission line. The cavity-backed reflector is utilized to improve the radiation characteristics of the angled dipole, such as gain, back-radiation, symmetric pattern, and similar 3 dB beamwidth in theE- andH-planes. The design, with a cavity aperture of0.5λ28-GHz×0.5λ28-GHz, results in aS11<-10 dB bandwidth of 26.7–30.6 GHz, a gain of 6.6–8.0 dB, and a similar 3 dB beamwidth of approximately 70° for both theE- andH-planes. Eight-element linear arrays with the proposed antenna having a center-to-center spacing of 5.6 mm(0.52λ28-GHz)are characterized, fabricated, and measured. By applying nonuniform power distribution across excitations, the array achieves a scan angle up to 40° and a sidelobe level below −15 dB.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Shishir Shanker Punjala ◽  
Niki Pissinou ◽  
Kia Makki

A novel broadband reconfigurable antenna design that can cover different frequency bands is presented. This antenna has multiple resonant frequencies. The reflection coefficient graphs for this antenna are presented in this paper. The new proposed design was investigated along with RF MEMS switches and the results are also presented. Investigations were carried out to check the efficiency of the antenna in the wireless powering domain. The antenna was placed in a concrete block and its result comparison to that of a dipole antenna is also presented in this paper.


2017 ◽  
Vol 3 (3) ◽  
pp. 140
Author(s):  
Suci Rahmatia ◽  
Putri Wulandari ◽  
Nurul Khadiko ◽  
Fitria Gani Sulistya

<p><em>Abstrak </em><strong> - Antena merupakan alat pemancar yang akrab dengan aktifitas sehari-hari dan mudah sekali dijumpai, di rumah, di gedung, bahkan pada alat komunikasi yang digunakan. Salah satu antena yang sering digunakan adalah antena televisi. Antena televisi yang sering digunakan adalah Yagi-Uda yang biasanya dipakai sebagai outdoor antena dan antena dipole yang biasanya digunakan untuk indoor antena. Masing – masing jenis antena memiliki kriteria dan keuntungan berdasarkan dari kebutuhan penggunaannya. Baik antena dipole maupun antena Yagi-Uda memiliki perbedaan diantaranya adalah besar bandwidth, nilai gain, dan pola radiasi. Pada paper ini dapat diketahui bahwa bandwidth yang dimiliki antena yagi-uda lebih besar daripada antena dipole yakni 0.39943 MHz untuk antena yagi-uda dan 0.16569 MHz untuk antena dipole. Begitupula dengan besar Gain yang dimiliki antena Yagi-Uda (6.64 dBi) lebih besar dibandingkan dengan gain dari antena dipole (2.29 dBi). Perbedaan ini dikarenakan faktor elemen director dan ketebalannya.</strong></p><p><strong><br /></strong></p><p><strong><em>Kata Kunci</em></strong> – <em>Atena Televisi, Atena Yagi-Uda, Atena Dipole, Gain, Bandwidth</em></p><p><em> </em></p><p><em>Abstract</em> <strong>- Antenna is a transmitter tool that is familiar with daily activity and easy to find at home, in the building, even on the communication tool used. One of antenna that is often used is a television antenna. Television antennas are often used is Yagi-Uda which is usually used as an outdoor antenna and dipole antenna that is usually used for indoor antennas. Each type of antenna has the criteria and advantages based on the needs of its use. Both dipole antennas and Yagi-Uda antennas have differences among them are bandwidth, gain, and radiation pattern. In this paper it can be seen that the bandwidth of yagi-uda antenna is bigger than dipole antenna that is 0.39943 MHz for Yagi-Uda antenna and 0.16569 MHz for dipole antenna. Neither the large Gain of the Yagi-Uda antenna (6.64 dBi) is greater than the gain of the dipole antenna (2.29 dBi). This difference is due to element factor of director and its thickness.</strong></p><p><strong><br /></strong></p><p><strong><em>Keywords</em></strong><strong> – </strong><em>Television Antenna, Yagi-Uda Antenna, Dipole Antenna, Gain, Bandwidth</em><strong> </strong></p>


2021 ◽  
pp. 004051752110134
Author(s):  
Daniel Agu ◽  
Rachel J Eike ◽  
Allyson Cliett ◽  
Dawn Michaelson ◽  
Rinn Cloud ◽  
...  

E-textile antennas have the potential to be the premier on-body wearable sensor. Embroidery techniques, which can be applied to produce e-textile antennas, assist in large production volumes and fast production speeds. This paper focuses on the effects of three commonly used embroidery parameters, namely stitch type, conductive thread location, and stabilizer, on the performance of embroidered dipole antennas in order to determine the ideal embroidery combination for optimal antenna performance. Fifty-four dipole antenna samples were fabricated and measured at the industrial, scientific, and medical (ISM) frequency band of 2.45 GHz. The results of this study show that machine-embroidered antenna designs with satin stitches resonate at a lower frequency and exhibit a lower transmission gain compared with those made with contour stiches, and the conductive thread location in the bobbin location plus the use of a water-soluble stabilizer can help improve impedance matching.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Maja Škiljo ◽  
Zoran Blažević

The capabilities of electrically small spherical helical antennas for wireless power transmission at small and moderate distances are analyzed. Influence of design on antenna radiation resistance, efficiency, and mode ratio is examined. These are the factors that, according to the theoretical considerations depicted herein, govern the maximum transfer performances. Various designs and configurations are considered for the purpose, with accent on small-size receivers suitable for implementation in powering common-sized gadgets. It is shown that spherical helix design is easily manipulated to achieve a reduced antenna size. Good radiation characteristics and impedance match are maintained by multiple-arm folded antenna design and by adjusting the separation between the arms.


Author(s):  
Jalal Naghar ◽  
Otman Aghzout ◽  
Azzeddin Naghar

This paper proposes a novel miniaturization technique to enhance the radiation properties of small multi-layer patch antenna used in packaged circuits. The multilayered antenna design is composed of three layers with different shapes. An enhancement on the radiation properties has been obtained by optimizing the geometry of the radiated element and the parasitic conductor of the middle layer. The whole design has been implemented on the FR4 substrate with dielectric constant of 4.4, thickness of 1.6 mm and Copper thickness of 5 μm. The first layer is a driven element while second and the third layer are parasitic patch elements. The optimized multilayer antenna has a very small size of 12×6×5 mm^3. Considering the small size of the antenna, a detailed study of the parameter affecting the radiation has been considered to force the antenna to operate at 2.4 GHz band. Miniaturization techniques based on the current distribution have been also taken into account to shift down the resonant frequency and reduces more and more the antenna size at the designed operating frequency. The miniaturized antenna maintains performant radiation characteristics in terms of reflexion coefficient, bandwidth and directivity. All developed antennas are simulated using the commercial Electromagnetic CST Microwave Studio software. Achieved results demonstrate a good performance with low cost and compact size.


Sign in / Sign up

Export Citation Format

Share Document