Flux-normalized wavefield decomposition and migration of seismic data

Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. S83-S92 ◽  
Author(s):  
Bjørge Ursin ◽  
Ørjan Pedersen ◽  
Børge Arntsen

Separation of wavefields into directional components can be accomplished by an eigenvalue decomposition of the accompanying system matrix. In conventional pressure-normalized wavefield decomposition, the resulting one-way wave equations contain an interaction term which depends on the reflectivity function. Applying directional wavefield decomposition using flux-normalized eigenvalue decomposition, and disregarding interaction between up- and downgoing wavefields, these interaction terms were absent. By also applying a correction term for transmission loss, the result was an improved estimate of the up- and downgoing wavefields. In the wave equation angle transform, a crosscorrelation function in local offset coordinates was Fourier-transformed to produce an estimate of reflectivity as a function of slowness or angle. We normalized this wave equation angle transform with an estimate of the plane-wave reflection coefficient. The flux-normalized one-way wave-propagation scheme was applied to imaging and to the normalized wave equation angle-transform on synthetic and field data; this proved the effectiveness of the new methods.

Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1817-1824 ◽  
Author(s):  
Hongbo Zhou ◽  
George A. McMechan

One‐pass 3-D modeling and migration for poststack seismic data may be implemented by replacing the traditional 45° one‐way wave equation (a third‐order partial differential equation) with a pair of second‐ and first‐order partial differential equations. Except for an extra correction term, the resulting second‐order equation has a form similar to the Claerbout 15° one‐way wave equation, which is known to have a nearly circular impulse response. In this approach, there is no need to compensate for splitting errors. Numerical tests on synthetic data show that this algorithm has the desirable attributes of being second order in accuracy and economical to solve. A modification of the Crank‐Nicholson implementation maintains stability.


Geophysics ◽  
1984 ◽  
Vol 49 (12) ◽  
pp. 2117-2131 ◽  
Author(s):  
Guan Cheng ◽  
Shimon Coen

The relationship between Born inversion and wave‐equation migration of common‐midpoint (CMP) stacked seismic reflection data is analytically determined. The three‐dimensional (3-D) velocity distribution obtained by Born inversion is shown to be directly related to the 3-D reflectivity function obtained by wave‐equation migration for full bandwidth or band‐limited data. The relationship is obtained by the reformulations of migration and Born inversion methods as inverse source problems for the 3-D wave equation. The reformulation leads to a definition of the reflectivity function as the source function for the wave equation. It also leads to determination of the Born inversion results by applying the algorithm for wave‐equation migration to modified surface data. The modified data are simply related to the CMP stacked data. Alternatively, Born inversion results may be obtained directly from the migrated section. Results from synthetic and recorded data are presented and found to be consistent with the theoretical developments.


2014 ◽  
Vol 32 (3) ◽  
pp. 497
Author(s):  
Gary Corey Aldunate ◽  
Reynam C. Pestana

ABSTRACT. The 3-D acoustic wave equation is generally solved using finite difference schemes on the mesh which defines the velocity model. However, whennumerical solution of the wave equation is done by finite difference schemes, attention should be taken with respect to dispersion and numerical stability. To overcomethese problems, one alternative is to solve the wave equation in the Fourier domain. This approach is stabler and makes possible to separate the full wave equation inits unidirectional equations. Thus, the full wave equation is decoupled in two first order differential equations, namely two equations related to the vertical component:upgoing (-Z) and downgoing (+Z) unidirectional equations. Among the solution methods, we can highlight the Split-Step-Plus-Interpolation (SS-PSPI). This methodhas been proven to be quite adequate for migration problems in 3-D media, providing satisfactory results at low computational cost. In this work, 3-D seismic modelingis implemented using Huygens’ principle and an equivalent simulation of the full wave equation solution is obtained by properly applying the solutions of the twouncoupled equations. In this procedure, a point source wavefield located at the surface is extrapolated downward recursively until the last depth level in the velocityfield is reached. A second extrapolation is done in order to extrapolate the wavefield upwards, from the last depth level to the surface level, and at each depth level thepreviously stored wavefield (saved during the downgoing step) is convolved with a reflectivity model in order to simulate secondary sources. To perform depth pre-stackmigration of 3-D datasets, the decoupled wave equations were used and the same process described for seismic modeling is applied for the propagation of sources andreceivers wavefields. Thus, depth migrated images are obtained using appropriate image conditions: the upgoing and downgoing wavefields of sources and receiversare correlated and the migrated images are formed. The seismic modeling and migration methods using upgoing and downgoing wavefields were tested on simple 3-Dmodels. Tests showed that the addition of upgoing wavefield in seismic migration, provide better result and highlight steep deep reflectors which do not appear in theresults using only downgoing wavefields.Keywords: 3-D seismic modeling and migration, Upoing and downgoing wavefields, Split-Step Phase Shift Plus Interpolation method, Decoupled wave equations,One-Way equations.RESUMO. A equação da onda acústica tridimensional é normalmente resolvida usando-se esquemas de diferenças finitas sobre a malha que define o modelo develocidade. Entretanto, deve-se ter cuidado com a dispersão e a estabilidade numérica durante o processo de propagação da onda na malha. Uma outra alternativa, bastante eficiente de se resolver a equação completa da onda, é desacoplando-a em duas equações de onda unidirecionais no domínio transformado de Fourier (solução pseudo-espectral). Assim, a equação completa da onda é separada em duas equações diferenciais de primeira ordem relativa á componente vertical: equação da ondaascendente (-Z) e da onda descendente (+Z). Normalmente, a equação unidirecional é resolvida com diferentes ordens de aproximação. Entre esses métodos, podemos destacar o método “Split-Step-Plus-Interpolation” (SS-PSPI), que tem sido bastante adequado para problemas de migração em meios 3-D, fornecendo resultados aum baixo custo computacional. Neste trabalho, o modelamento sísmico 3-D foi implementado usando-se o princípio de Huygens com as duas equações de onda unidirecionais desacopladas. Com o objetivo de simular uma solução equivalente à solução da equação completa, uma fonte pontual localizada na superfície é extrapoladaem profundidade, de forma recursiva, até atingir o último nível de profundidade na malha do modelo de velocidades. Uma segunda extrapolação é realizada para extrapolar para cima o campo de onda, desde o último nível em profundidade até à superfície do modelo. Assim, os receptores localizados na superfície registram ocampo de onda ascendente, que trazem informações dos refletores em subsuperfície na forma de reflexões e difrações. Para realizar a migração pré-empilhamento em profundidade de dados 3-D, usando-se as equações de onda desacopladas, o mesmo procedimento descrito para o modelamento sísmico é utilizado para a propagação dos campos de onda de fontes e receptores. Imagens migradas são obtidas usando-se condições de imagem apropriadas, onde os campos de onda da fonte e dos receptores, descendente e ascendente, são correlacionados. Sobre modelos 3-D simples foram testados os métodos de modelamento e migração, levando em conta oscampos de onda ascendente e descendente. Ficando, assim, evidenciado que no método de migração sísmica, proposto aqui, a adição do campo de onda ascendente fornece um melhor resultado, ressaltando os refletores íngremes que não aparecem nos resultados utilizando-se apenas a extrapolação do campo de onda descendente.Palavras-chave: Migração e modelagem sísmica 3-D, Migração em duas etapas mais interpolação, equações de ondas unidirecionais.


Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. E1-E10 ◽  
Author(s):  
Yu Zhang ◽  
Guanquan Zhang ◽  
Norman Bleistein

One-way wave operators are powerful tools for forward modeling and migration. Here, we describe a recently developed true-amplitude implementation of modified one-way operators and present some numerical examples. By “true-amplitude” one-way forward modeling we mean that the solutions are dynamically correct as well as kinematically correct. That is, ray theory applied to these equations yields the upward- and downward-traveling eikonal equations of the full wave equation, and the amplitude satisfies the transport equation of the full wave equation. The solutions of these equations are used in the standard wave-equation migration imaging condition. The boundary data for the downgoing wave is also modified from the one used in the classic theory because the latter data is not consistent with a point source for the full wave equation. When the full wave-form solutions are replaced by their ray-theoretic approximations, the imaging formula reduces to the common-shot Kirchhoff inversion formula. In this sense, the migration is true amplitude as well. On the other hand, this new method retains all of the fidelity features of wave equation migration. Computer output using numerically generated data confirms the accuracy of this inversion method. However, there are practical limitations. The observed data must be a solution of the wave equation. Therefore, the data must be collected from a single common-shot experiment. Multiexperiment data, such as common-offset data, cannot be used with this method as presently formulated.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


Author(s):  
Peter Straka ◽  
Mark Meerschaert ◽  
Robert McGough ◽  
Yuzhen Zhou

AbstractFractional wave equations with attenuation have been proposed by Caputo [5], Szabo [28], Chen and Holm [7], and Kelly et al. [11]. These equations capture the power-law attenuation with frequency observed in many experimental settings when sound waves travel through inhomogeneous media. In particular, these models are useful for medical ultrasound. This paper develops stochastic solutions and weak solutions to the power law wave equation of Kelly et al. [11].


1990 ◽  
Vol 44 (2) ◽  
pp. 361-375 ◽  
Author(s):  
Andrew N. Wright

In a cold plasma the wave equation for solely compressional magnetic field perturbations appears to decouple in any surface orthogonal to the background magnetic field. However, the compressional fields in any two of these surfaces are related to each other by the condition that the perturbation field b be divergence-free. Hence the wave equations in these surfaces are not truly decoupled from one another. If the two solutions happen to be ‘matched’ (i.e. V.b = 0) then the medium may execute a solely compressional oscillation. If the two solutions are unmatched then transverse fields must evolve. We consider two classes of compressional solutions and derive a set of criteria for when the medium will be able to support pure compressional field oscillations. These criteria relate to the geometry of the magnetic field and the plasma density distribution. We present the conditions in such a manner that it is easy to see if a given magnetoplasma is able to executive either of the compressional solutions we investigate.


2021 ◽  
Vol 5 (1) ◽  
pp. 314-336
Author(s):  
Tristram de Piro ◽  

We clarify some arguments concerning Jefimenko’s equations, as a way of constructing solutions to Maxwell’s equations, for charge and current satisfying the continuity equation. We then isolate a condition on non-radiation in all inertial frames, which is intuitively reasonable for the stability of an atomic system, and prove that the condition is equivalent to the charge and current satisfying certain relations, including the wave equations. Finally, we prove that with these relations, the energy in the electromagnetic field is quantised and displays the properties of the Balmer series.


1996 ◽  
Vol 05 (03) ◽  
pp. 217-225 ◽  
Author(s):  
FREDRIK ANDERSSON ◽  
S. BRIAN EDGAR

By reconciling the wave equation for the Weyl tensor with the corresponding wave equation for the Weyl spinor, we establish a new tensor identity—involving the sum of terms each consisting of a product of the Weyl and Ricci tensors—valid in four (and only four) dimensions. This enables us to give, for the first time, the correct and simplest form of the wave equation for the Weyl tensor in four-dimensional nonvacuum spacetimes. The wave equation for the Weyl tensor in n(> 4) dimensional nonvacuum spaces is also presented for the first time; we show that there does not exist an analogous n-dimensional tensor identity matching the four-dimensional one, and so it follows that there does not exist an analogous simplification of the Weyl wave equation in the n-dimensional case. It is also shown how our new identity, and some other recently discovered identities, relate to a large class of dimensionally dependent identities found some time ago by Lovelock.


Sign in / Sign up

Export Citation Format

Share Document